Filtros : "TRANSISTORES" "ARTIGO DE PERIODICO" Removido: "CÉLULAS SOLARES" Limpar

Filtros



Refine with date range


  • Source: Solid State Electronics. Unidade: EP

    Subjects: TRANSISTORES, PERÓXIDO DE HIDROGÊNIO, SENSORES BIOMÉDICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DUARTE, Pedro Henrique et al. Study of ISFET for KCl sensing. Solid State Electronics, v. 219, p. 1-5, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.sse.2024.108974. Acesso em: 15 set. 2024.
    • APA

      Duarte, P. H., Rangel, R. C., Sasaki, K. R. A., & Martino, J. A. (2024). Study of ISFET for KCl sensing. Solid State Electronics, 219, 1-5. doi:10.1016/j.sse.2024.108974
    • NLM

      Duarte PH, Rangel RC, Sasaki KRA, Martino JA. Study of ISFET for KCl sensing [Internet]. Solid State Electronics. 2024 ; 219 1-5.[citado 2024 set. 15 ] Available from: https://doi.org/10.1016/j.sse.2024.108974
    • Vancouver

      Duarte PH, Rangel RC, Sasaki KRA, Martino JA. Study of ISFET for KCl sensing [Internet]. Solid State Electronics. 2024 ; 219 1-5.[citado 2024 set. 15 ] Available from: https://doi.org/10.1016/j.sse.2024.108974
  • Source: Solid State Electronics. Unidade: EP

    Subjects: GLICOSE, DRENAGEM, TRANSISTORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      YOJO, Leonardo Shimizu et al. An enzymatic glucose biosensor using the BESOI MOSFET. Solid State Electronics, v. 211, n. Ja 2024, p. 1-6, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.sse.2023.108830. Acesso em: 15 set. 2024.
    • APA

      Yojo, L. S., Rangel, R. C., Duarte, P. H., Sasaki, K. R. A., & Martino, J. A. (2024). An enzymatic glucose biosensor using the BESOI MOSFET. Solid State Electronics, 211( Ja 2024), 1-6. doi:10.1016/j.sse.2023.108830
    • NLM

      Yojo LS, Rangel RC, Duarte PH, Sasaki KRA, Martino JA. An enzymatic glucose biosensor using the BESOI MOSFET [Internet]. Solid State Electronics. 2024 ;211( Ja 2024): 1-6.[citado 2024 set. 15 ] Available from: https://doi.org/10.1016/j.sse.2023.108830
    • Vancouver

      Yojo LS, Rangel RC, Duarte PH, Sasaki KRA, Martino JA. An enzymatic glucose biosensor using the BESOI MOSFET [Internet]. Solid State Electronics. 2024 ;211( Ja 2024): 1-6.[citado 2024 set. 15 ] Available from: https://doi.org/10.1016/j.sse.2023.108830
  • Source: Advanced Electronic Materials. Unidades: IFSC, EESC

    Subjects: TRANSISTORES, MATERIAIS ELETRÔNICOS, ELETROQUÍMICA ORGÂNICA, POLÍMEROS (QUÍMICA ORGÂNICA)

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COLUCCI, Renan e FEITOSA, Bianca de Andrade e FARIA, Gregório Couto. Impact of ionic species on the performance of PEDOT:PSS-based organic electrochemical transistors. Advanced Electronic Materials, v. 10, n. 2, p. 2300235-1-2300235-8 + supporting information, 2024Tradução . . Disponível em: https://doi.org/10.1002/aelm.202300235. Acesso em: 15 set. 2024.
    • APA

      Colucci, R., Feitosa, B. de A., & Faria, G. C. (2024). Impact of ionic species on the performance of PEDOT:PSS-based organic electrochemical transistors. Advanced Electronic Materials, 10( 2), 2300235-1-2300235-8 + supporting information. doi:10.1002/aelm.202300235
    • NLM

      Colucci R, Feitosa B de A, Faria GC. Impact of ionic species on the performance of PEDOT:PSS-based organic electrochemical transistors [Internet]. Advanced Electronic Materials. 2024 ; 10( 2): 2300235-1-2300235-8 + supporting information.[citado 2024 set. 15 ] Available from: https://doi.org/10.1002/aelm.202300235
    • Vancouver

      Colucci R, Feitosa B de A, Faria GC. Impact of ionic species on the performance of PEDOT:PSS-based organic electrochemical transistors [Internet]. Advanced Electronic Materials. 2024 ; 10( 2): 2300235-1-2300235-8 + supporting information.[citado 2024 set. 15 ] Available from: https://doi.org/10.1002/aelm.202300235
  • Source: ACS Applied Electronic Materials. Unidade: IFSC

    Subjects: ELETROQUÍMICA, TRANSISTORES, POLÍMEROS (MATERIAIS)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LUGINIESKI, Marcos e TORRES, Bruno Bassi Millan e FARIA, Gregório Couto. Guidelines on measuring volumetric capacitance in organic electrochemical transistors. ACS Applied Electronic Materials, v. 6, n. 4, p. 2225-2231 + supporting information: S1-S10, 2024Tradução . . Disponível em: https://doi.org/10.1021/acsaelm.3c01673. Acesso em: 15 set. 2024.
    • APA

      Luginieski, M., Torres, B. B. M., & Faria, G. C. (2024). Guidelines on measuring volumetric capacitance in organic electrochemical transistors. ACS Applied Electronic Materials, 6( 4), 2225-2231 + supporting information: S1-S10. doi:10.1021/acsaelm.3c01673
    • NLM

      Luginieski M, Torres BBM, Faria GC. Guidelines on measuring volumetric capacitance in organic electrochemical transistors [Internet]. ACS Applied Electronic Materials. 2024 ; 6( 4): 2225-2231 + supporting information: S1-S10.[citado 2024 set. 15 ] Available from: https://doi.org/10.1021/acsaelm.3c01673
    • Vancouver

      Luginieski M, Torres BBM, Faria GC. Guidelines on measuring volumetric capacitance in organic electrochemical transistors [Internet]. ACS Applied Electronic Materials. 2024 ; 6( 4): 2225-2231 + supporting information: S1-S10.[citado 2024 set. 15 ] Available from: https://doi.org/10.1021/acsaelm.3c01673
  • Source: Solid State Electronics. Unidade: EP

    Subjects: TRANSISTORES, CIRCUITOS ANALÓGICOS, SEMICONDUTORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PERINA, Welder Fernandes et al. Experimental study of MISHEMT from 450 K down to 200 K for analog applications. Solid State Electronics, v. 208, p. 1-4, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.sse.2023.108742. Acesso em: 15 set. 2024.
    • APA

      Perina, W. F., Martino, J. A., Simoen, E., Peralagu, U., Collaert, N., & Agopian, P. G. D. (2023). Experimental study of MISHEMT from 450 K down to 200 K for analog applications. Solid State Electronics, 208, 1-4. doi:10.1016/j.sse.2023.108742
    • NLM

      Perina WF, Martino JA, Simoen E, Peralagu U, Collaert N, Agopian PGD. Experimental study of MISHEMT from 450 K down to 200 K for analog applications [Internet]. Solid State Electronics. 2023 ; 208 1-4.[citado 2024 set. 15 ] Available from: https://doi.org/10.1016/j.sse.2023.108742
    • Vancouver

      Perina WF, Martino JA, Simoen E, Peralagu U, Collaert N, Agopian PGD. Experimental study of MISHEMT from 450 K down to 200 K for analog applications [Internet]. Solid State Electronics. 2023 ; 208 1-4.[citado 2024 set. 15 ] Available from: https://doi.org/10.1016/j.sse.2023.108742
  • Source: Journal of Integrated Circuits and Systems. Unidade: EP

    Subjects: TRANSISTORES, SOLUÇÕES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DUARTE, Pedro Henrique et al. ISFET fabrication and characterization for hydrogen peroxide sensing. Journal of Integrated Circuits and Systems, v. 18, n. 1, p. 1-4, 2023Tradução . . Disponível em: https://doi.org/10.29292/jics.v18i1.646. Acesso em: 15 set. 2024.
    • APA

      Duarte, P. H., Rangel, R. C., Ramos, D. A., Yojo, L. S., Mori, C. A. B., Sasaki, K. R. A., et al. (2023). ISFET fabrication and characterization for hydrogen peroxide sensing. Journal of Integrated Circuits and Systems, 18( 1), 1-4. doi:10.29292/jics.v18i1.646
    • NLM

      Duarte PH, Rangel RC, Ramos DA, Yojo LS, Mori CAB, Sasaki KRA, Agopian PGD, Martino JA. ISFET fabrication and characterization for hydrogen peroxide sensing [Internet]. Journal of Integrated Circuits and Systems. 2023 ; 18( 1): 1-4.[citado 2024 set. 15 ] Available from: https://doi.org/10.29292/jics.v18i1.646
    • Vancouver

      Duarte PH, Rangel RC, Ramos DA, Yojo LS, Mori CAB, Sasaki KRA, Agopian PGD, Martino JA. ISFET fabrication and characterization for hydrogen peroxide sensing [Internet]. Journal of Integrated Circuits and Systems. 2023 ; 18( 1): 1-4.[citado 2024 set. 15 ] Available from: https://doi.org/10.29292/jics.v18i1.646
  • Source: Journal of Materials Chemistry C. Unidade: IFSC

    Subjects: COBRE, TRANSISTORES, ELETRÔNICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Rafael Cintra Hensel et al. Cu-modified electrolyte-gated transistors based on reduced graphene oxide. Journal of Materials Chemistry C, v. 11, n. 26, p. 8876-8884 + supplementary information, 2023Tradução . . Disponível em: https://doi.org/10.1039/d3tc00596h. Acesso em: 15 set. 2024.
    • APA

      Ferreira, R. C. H., Comisso, N., Musiani, M., Sedona, F., Sambi, M., Cester, A., et al. (2023). Cu-modified electrolyte-gated transistors based on reduced graphene oxide. Journal of Materials Chemistry C, 11( 26), 8876-8884 + supplementary information. doi:10.1039/d3tc00596h
    • NLM

      Ferreira RCH, Comisso N, Musiani M, Sedona F, Sambi M, Cester A, Lago N, Casalini S. Cu-modified electrolyte-gated transistors based on reduced graphene oxide [Internet]. Journal of Materials Chemistry C. 2023 ; 11( 26): 8876-8884 + supplementary information.[citado 2024 set. 15 ] Available from: https://doi.org/10.1039/d3tc00596h
    • Vancouver

      Ferreira RCH, Comisso N, Musiani M, Sedona F, Sambi M, Cester A, Lago N, Casalini S. Cu-modified electrolyte-gated transistors based on reduced graphene oxide [Internet]. Journal of Materials Chemistry C. 2023 ; 11( 26): 8876-8884 + supplementary information.[citado 2024 set. 15 ] Available from: https://doi.org/10.1039/d3tc00596h
  • Source: Solid State Electronics. Unidade: EP

    Subjects: TRANSISTORES, TEMPERATURA, NANOTECNOLOGIA, CIRCUITOS ANALÓGICOS, CIRCUITOS DIGITAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, V C P et al. Evaluation of n-type gate-all-around vertically-stacked nanosheet FETs from 473 K down to 173 K for analog applications. Solid State Electronics, v. 208, p. 1-5, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.sse.2023.108729. Acesso em: 15 set. 2024.
    • APA

      Silva, V. C. P., Martino, J. A., Simoen, E., Veloso, A., & Agopian, P. G. D. (2023). Evaluation of n-type gate-all-around vertically-stacked nanosheet FETs from 473 K down to 173 K for analog applications. Solid State Electronics, 208, 1-5. doi:10.1016/j.sse.2023.108729
    • NLM

      Silva VCP, Martino JA, Simoen E, Veloso A, Agopian PGD. Evaluation of n-type gate-all-around vertically-stacked nanosheet FETs from 473 K down to 173 K for analog applications [Internet]. Solid State Electronics. 2023 ;208 1-5.[citado 2024 set. 15 ] Available from: https://doi.org/10.1016/j.sse.2023.108729
    • Vancouver

      Silva VCP, Martino JA, Simoen E, Veloso A, Agopian PGD. Evaluation of n-type gate-all-around vertically-stacked nanosheet FETs from 473 K down to 173 K for analog applications [Internet]. Solid State Electronics. 2023 ;208 1-5.[citado 2024 set. 15 ] Available from: https://doi.org/10.1016/j.sse.2023.108729
  • Source: Solid State Electronics. Unidade: EP

    Subjects: TRANSISTORES, CIRCUITOS ANALÓGICOS, NANOTECNOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Wenita de Lima et al. Comparison of low-dropout voltage regulators designed with line and nanowire tunnel-FET experimental data including a simple process variability analysis. Solid State Electronics, v. 202, p. 1-8, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.sse.2023.108611. Acesso em: 15 set. 2024.
    • APA

      Silva, W. de L., Toledo, R. do N., Gonçalez Filho, W., Nogueira, A. de M., Agopian, P. G. D., & Martino, J. A. (2023). Comparison of low-dropout voltage regulators designed with line and nanowire tunnel-FET experimental data including a simple process variability analysis. Solid State Electronics, 202, 1-8. doi:10.1016/j.sse.2023.108611
    • NLM

      Silva W de L, Toledo R do N, Gonçalez Filho W, Nogueira A de M, Agopian PGD, Martino JA. Comparison of low-dropout voltage regulators designed with line and nanowire tunnel-FET experimental data including a simple process variability analysis [Internet]. Solid State Electronics. 2023 ; 202 1-8.[citado 2024 set. 15 ] Available from: https://doi.org/10.1016/j.sse.2023.108611
    • Vancouver

      Silva W de L, Toledo R do N, Gonçalez Filho W, Nogueira A de M, Agopian PGD, Martino JA. Comparison of low-dropout voltage regulators designed with line and nanowire tunnel-FET experimental data including a simple process variability analysis [Internet]. Solid State Electronics. 2023 ; 202 1-8.[citado 2024 set. 15 ] Available from: https://doi.org/10.1016/j.sse.2023.108611
  • Source: Semiconductor Science and Technology. Unidade: EP

    Subjects: CIRCUITOS ANALÓGICOS, TRANSISTORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOLEDO, Rodrigo do Nascimento e MARTINO, João Antonio e AGOPIAN, Paula Ghedini Der. Hybrid low-dropout voltage regulator designed with TFET-MOSFET nanowire technologies. Semiconductor Science and Technology, v. 38, n. 9, p. 1-12, 2023Tradução . . Disponível em: https://doi.org/10.1088/1361-6641/aceb84. Acesso em: 15 set. 2024.
    • APA

      Toledo, R. do N., Martino, J. A., & Agopian, P. G. D. (2023). Hybrid low-dropout voltage regulator designed with TFET-MOSFET nanowire technologies. Semiconductor Science and Technology, 38( 9), 1-12. doi:10.1088/1361-6641/aceb84
    • NLM

      Toledo R do N, Martino JA, Agopian PGD. Hybrid low-dropout voltage regulator designed with TFET-MOSFET nanowire technologies [Internet]. Semiconductor Science and Technology. 2023 ; 38( 9): 1-12.[citado 2024 set. 15 ] Available from: https://doi.org/10.1088/1361-6641/aceb84
    • Vancouver

      Toledo R do N, Martino JA, Agopian PGD. Hybrid low-dropout voltage regulator designed with TFET-MOSFET nanowire technologies [Internet]. Semiconductor Science and Technology. 2023 ; 38( 9): 1-12.[citado 2024 set. 15 ] Available from: https://doi.org/10.1088/1361-6641/aceb84
  • Source: Solid State Electronics. Unidade: EP

    Subjects: TRANSISTORES, CIRCUITOS ANALÓGICOS, TEMPERATURA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PERINA, Welder Fernandes et al. Experimental study of MISHEMT from 450k down to 200 k for analog applications. Solid State Electronics, v. 208, p. 1-4, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.sse.2023.108742. Acesso em: 15 set. 2024.
    • APA

      Perina, W. F., Martino, J. A., Simoen, E., Peralagu, U., Collaert, N., & Agopian, P. G. D. (2023). Experimental study of MISHEMT from 450k down to 200 k for analog applications. Solid State Electronics, 208, 1-4. doi:10.1016/j.sse.2023.108742
    • NLM

      Perina WF, Martino JA, Simoen E, Peralagu U, Collaert N, Agopian PGD. Experimental study of MISHEMT from 450k down to 200 k for analog applications [Internet]. Solid State Electronics. 2023 ; 208 1-4.[citado 2024 set. 15 ] Available from: https://doi.org/10.1016/j.sse.2023.108742
    • Vancouver

      Perina WF, Martino JA, Simoen E, Peralagu U, Collaert N, Agopian PGD. Experimental study of MISHEMT from 450k down to 200 k for analog applications [Internet]. Solid State Electronics. 2023 ; 208 1-4.[citado 2024 set. 15 ] Available from: https://doi.org/10.1016/j.sse.2023.108742
  • Source: Semiconductor Science and Technology. Unidade: EP

    Subjects: TRANSISTORES, SEMICONDUTORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CANALES, Bruno Godoy et al. MISHEMT intrinsic voltage gain under multiple channel output characteristics. Semiconductor Science and Technology, v. 38, n. 11, p. 1-6, 2023Tradução . . Disponível em: https://doi.org/10.1088/1361-6641/acfa1f. Acesso em: 15 set. 2024.
    • APA

      Canales, B. G., Perina, W. F., Martino, J. A., Simoen, E., Peralagu, U., Collaert, N., & Agopian, P. G. D. (2023). MISHEMT intrinsic voltage gain under multiple channel output characteristics. Semiconductor Science and Technology, 38( 11), 1-6. doi:10.1088/1361-6641/acfa1f
    • NLM

      Canales BG, Perina WF, Martino JA, Simoen E, Peralagu U, Collaert N, Agopian PGD. MISHEMT intrinsic voltage gain under multiple channel output characteristics [Internet]. Semiconductor Science and Technology. 2023 ; 38( 11): 1-6.[citado 2024 set. 15 ] Available from: https://doi.org/10.1088/1361-6641/acfa1f
    • Vancouver

      Canales BG, Perina WF, Martino JA, Simoen E, Peralagu U, Collaert N, Agopian PGD. MISHEMT intrinsic voltage gain under multiple channel output characteristics [Internet]. Semiconductor Science and Technology. 2023 ; 38( 11): 1-6.[citado 2024 set. 15 ] Available from: https://doi.org/10.1088/1361-6641/acfa1f
  • Source: Journal of Physical Chemistry C. Unidades: IFSC, EESC

    Subjects: ELETROQUÍMICA ORGÂNICA, POLÍMEROS (QUÍMICA ORGÂNICA), TRANSISTORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COUTINHO, Douglas José et al. Distinctive behavior of field-effect and redox electrolyte-gated organic transistors. Journal of Physical Chemistry C, v. 127, n. 50, p. 24443-24451 + supporting information: S1-S3, 2023Tradução . . Disponível em: https://doi.org/10.1021/acs.jpcc.3c06261. Acesso em: 15 set. 2024.
    • APA

      Coutinho, D. J., Feitosa, B. de A., Barbosa, H. F. de P., Colucci, R., Torres, B. B. M., & Faria, G. C. (2023). Distinctive behavior of field-effect and redox electrolyte-gated organic transistors. Journal of Physical Chemistry C, 127( 50), 24443-24451 + supporting information: S1-S3. doi:10.1021/acs.jpcc.3c06261
    • NLM

      Coutinho DJ, Feitosa B de A, Barbosa HF de P, Colucci R, Torres BBM, Faria GC. Distinctive behavior of field-effect and redox electrolyte-gated organic transistors [Internet]. Journal of Physical Chemistry C. 2023 ; 127( 50): 24443-24451 + supporting information: S1-S3.[citado 2024 set. 15 ] Available from: https://doi.org/10.1021/acs.jpcc.3c06261
    • Vancouver

      Coutinho DJ, Feitosa B de A, Barbosa HF de P, Colucci R, Torres BBM, Faria GC. Distinctive behavior of field-effect and redox electrolyte-gated organic transistors [Internet]. Journal of Physical Chemistry C. 2023 ; 127( 50): 24443-24451 + supporting information: S1-S3.[citado 2024 set. 15 ] Available from: https://doi.org/10.1021/acs.jpcc.3c06261
  • Source: Journal of Integrated Circuits and Systems. Unidade: EP

    Subjects: TRANSISTORES, CIRCUITOS ANALÓGICOS, NANOTECNOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOLEDO, Rodrigo do Nascimento e MARTINO, João Antonio e AGOPIAN, Paula Ghedini Der. Low-dropout voltage regulator designed with nanowire TFET with different source composition experimental data. Journal of Integrated Circuits and Systems, v. 18, n. 1, p. 1-6, 2023Tradução . . Disponível em: https://doi.org/10.29292/jics.v18i1.653. Acesso em: 15 set. 2024.
    • APA

      Toledo, R. do N., Martino, J. A., & Agopian, P. G. D. (2023). Low-dropout voltage regulator designed with nanowire TFET with different source composition experimental data. Journal of Integrated Circuits and Systems, 18( 1), 1-6. doi:10.29292/jics.v18il.653
    • NLM

      Toledo R do N, Martino JA, Agopian PGD. Low-dropout voltage regulator designed with nanowire TFET with different source composition experimental data [Internet]. Journal of Integrated Circuits and Systems. 2023 ;18( 1): 1-6.[citado 2024 set. 15 ] Available from: https://doi.org/10.29292/jics.v18i1.653
    • Vancouver

      Toledo R do N, Martino JA, Agopian PGD. Low-dropout voltage regulator designed with nanowire TFET with different source composition experimental data [Internet]. Journal of Integrated Circuits and Systems. 2023 ;18( 1): 1-6.[citado 2024 set. 15 ] Available from: https://doi.org/10.29292/jics.v18i1.653
  • Source: Solid State Electronics. Unidade: EP

    Subjects: TRANSISTORES, CONDUTIVIDADE ELÉTRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOLEDO, Rodrigo do Nascimento et al. Comparison between low-dropout voltage regulators designed with line and nanowire tunnel field effect transistors using experimental data. Solid State Electronics, v. 194, p. 1-4, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.sse.2022.108328. Acesso em: 15 set. 2024.
    • APA

      Toledo, R. do N., Silva, W. de L., Gonçalez Filho, W., Nogueira, A. de M., Martino, J. A., & Agopian, P. G. D. (2022). Comparison between low-dropout voltage regulators designed with line and nanowire tunnel field effect transistors using experimental data. Solid State Electronics, 194, 1-4. doi:10.1016/j.sse.2022.108328
    • NLM

      Toledo R do N, Silva W de L, Gonçalez Filho W, Nogueira A de M, Martino JA, Agopian PGD. Comparison between low-dropout voltage regulators designed with line and nanowire tunnel field effect transistors using experimental data [Internet]. Solid State Electronics. 2022 ; 194 1-4.[citado 2024 set. 15 ] Available from: https://doi.org/10.1016/j.sse.2022.108328
    • Vancouver

      Toledo R do N, Silva W de L, Gonçalez Filho W, Nogueira A de M, Martino JA, Agopian PGD. Comparison between low-dropout voltage regulators designed with line and nanowire tunnel field effect transistors using experimental data [Internet]. Solid State Electronics. 2022 ; 194 1-4.[citado 2024 set. 15 ] Available from: https://doi.org/10.1016/j.sse.2022.108328
  • Source: Solid State Electronics. Unidade: EP

    Subjects: NANOTECNOLOGIA, CIRCUITOS ANALÓGICOS, TRANSISTORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUSA, Julia Cristina Soares et al. Design of operational transconductance amplifier with gate-all-around nanosheet MOSFET using experimental data from room temperature to 200°C. Solid State Electronics, v. 189, p. 1-9, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.sse.2022.108238. Acesso em: 15 set. 2024.
    • APA

      Sousa, J. C. S., Perina, W. F., Rangel, R., Simoen, E., Veloso, A., Martino, J. A., & Agopian, P. G. D. (2022). Design of operational transconductance amplifier with gate-all-around nanosheet MOSFET using experimental data from room temperature to 200°C. Solid State Electronics, 189, 1-9. doi:10.1016/j.sse.2022.108238
    • NLM

      Sousa JCS, Perina WF, Rangel R, Simoen E, Veloso A, Martino JA, Agopian PGD. Design of operational transconductance amplifier with gate-all-around nanosheet MOSFET using experimental data from room temperature to 200°C [Internet]. Solid State Electronics. 2022 ;189 1-9.[citado 2024 set. 15 ] Available from: https://doi.org/10.1016/j.sse.2022.108238
    • Vancouver

      Sousa JCS, Perina WF, Rangel R, Simoen E, Veloso A, Martino JA, Agopian PGD. Design of operational transconductance amplifier with gate-all-around nanosheet MOSFET using experimental data from room temperature to 200°C [Internet]. Solid State Electronics. 2022 ;189 1-9.[citado 2024 set. 15 ] Available from: https://doi.org/10.1016/j.sse.2022.108238
  • Source: Journal of Integrated Circuits and Systems. Unidade: EP

    Subjects: TRANSISTORES, SENSOR, CIRCUITOS INTEGRADOS MOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RANGEL, Ricardo Cardoso e SASAKI, Kátia Regina Akemi e MARTINO, João Antonio. Reconfigurable SOI-MOSFET: past, present and future applications. Journal of Integrated Circuits and Systems, v. 17, n. 2, p. 1-9, 2022Tradução . . Disponível em: https://doi.org/10.29292/jics.v17i2.626. Acesso em: 15 set. 2024.
    • APA

      Rangel, R. C., Sasaki, K. R. A., & Martino, J. A. (2022). Reconfigurable SOI-MOSFET: past, present and future applications. Journal of Integrated Circuits and Systems, 17( 2), 1-9. doi:10.29292/jics.v17i2.626
    • NLM

      Rangel RC, Sasaki KRA, Martino JA. Reconfigurable SOI-MOSFET: past, present and future applications [Internet]. Journal of Integrated Circuits and Systems. 2022 ; 17( 2): 1-9.[citado 2024 set. 15 ] Available from: https://doi.org/10.29292/jics.v17i2.626
    • Vancouver

      Rangel RC, Sasaki KRA, Martino JA. Reconfigurable SOI-MOSFET: past, present and future applications [Internet]. Journal of Integrated Circuits and Systems. 2022 ; 17( 2): 1-9.[citado 2024 set. 15 ] Available from: https://doi.org/10.29292/jics.v17i2.626
  • Source: RSC Advances. Unidade: IFSC

    Subjects: MATERIAIS ELETRÔNICOS, DIODOS, TRANSISTORES, POLÍMEROS (MATERIAIS)

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, Marcelo et al. Unrevealing the interaction between O2 molecules and poly(3-hexylthiophene-2,5-diyl) (P3HT). RSC Advances, v. 2022, n. 29, p. 18578-18584, 2022Tradução . . Disponível em: https://doi.org/10.1039/d2ra02969c. Acesso em: 15 set. 2024.
    • APA

      Fernandes, M., Wrasse, E. O., Koyama, C. J. K., Günther, F. S., & Coutinho, D. J. (2022). Unrevealing the interaction between O2 molecules and poly(3-hexylthiophene-2,5-diyl) (P3HT). RSC Advances, 2022( 29), 18578-18584. doi:10.1039/d2ra02969c
    • NLM

      Fernandes M, Wrasse EO, Koyama CJK, Günther FS, Coutinho DJ. Unrevealing the interaction between O2 molecules and poly(3-hexylthiophene-2,5-diyl) (P3HT) [Internet]. RSC Advances. 2022 ; 2022( 29): 18578-18584.[citado 2024 set. 15 ] Available from: https://doi.org/10.1039/d2ra02969c
    • Vancouver

      Fernandes M, Wrasse EO, Koyama CJK, Günther FS, Coutinho DJ. Unrevealing the interaction between O2 molecules and poly(3-hexylthiophene-2,5-diyl) (P3HT) [Internet]. RSC Advances. 2022 ; 2022( 29): 18578-18584.[citado 2024 set. 15 ] Available from: https://doi.org/10.1039/d2ra02969c
  • Source: Journal of Integrated Circuits and Systems. Unidade: EP

    Subjects: TRANSISTORES, SENSOR, CIRCUITOS ANALÓGICOS, CIRCUITOS DIGITAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AGOPIAN, Paula Ghedini Der et al. Tunnel-FET evolution and applications for analog circuits. Journal of Integrated Circuits and Systems, v. 17, n. 2, p. 1-7, 2022Tradução . . Disponível em: https://doi.org/10.29292/jics.v17i2.631. Acesso em: 15 set. 2024.
    • APA

      Agopian, P. G. D., Martino, J. A., Simoen, E., Rooyackers, R., & Claeys, C. (2022). Tunnel-FET evolution and applications for analog circuits. Journal of Integrated Circuits and Systems, 17( 2), 1-7. doi:10.29292/jics.v17i2.631
    • NLM

      Agopian PGD, Martino JA, Simoen E, Rooyackers R, Claeys C. Tunnel-FET evolution and applications for analog circuits [Internet]. Journal of Integrated Circuits and Systems. 2022 ; 17( 2): 1-7.[citado 2024 set. 15 ] Available from: https://doi.org/10.29292/jics.v17i2.631
    • Vancouver

      Agopian PGD, Martino JA, Simoen E, Rooyackers R, Claeys C. Tunnel-FET evolution and applications for analog circuits [Internet]. Journal of Integrated Circuits and Systems. 2022 ; 17( 2): 1-7.[citado 2024 set. 15 ] Available from: https://doi.org/10.29292/jics.v17i2.631
  • Source: Journal of Integrated Circuits and Systems. Unidades: EP, EESC

    Subjects: TRANSISTORES, NANOELETRÔNICA, TEMPERATURA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SIMOEN, Eddy et al. Performance perspective of gate-all-around double nanosheet CMOS beyond high-speed logic applications. Journal of Integrated Circuits and Systems, v. 17, n. 2, p. 1-9, 2022Tradução . . Disponível em: https://doi.org/10.29292/jics.v17i2.617. Acesso em: 15 set. 2024.
    • APA

      Simoen, E., Coelho, C. H. S., Silva, V. C. P. da, Martino, J. A., Agopian, P. G. D., Oliveira, A., et al. (2022). Performance perspective of gate-all-around double nanosheet CMOS beyond high-speed logic applications. Journal of Integrated Circuits and Systems, 17( 2), 1-9. doi:10.29292/jics.v17i2.617
    • NLM

      Simoen E, Coelho CHS, Silva VCP da, Martino JA, Agopian PGD, Oliveira A, Cretu B, Veloso A. Performance perspective of gate-all-around double nanosheet CMOS beyond high-speed logic applications [Internet]. Journal of Integrated Circuits and Systems. 2022 ; 17( 2): 1-9.[citado 2024 set. 15 ] Available from: https://doi.org/10.29292/jics.v17i2.617
    • Vancouver

      Simoen E, Coelho CHS, Silva VCP da, Martino JA, Agopian PGD, Oliveira A, Cretu B, Veloso A. Performance perspective of gate-all-around double nanosheet CMOS beyond high-speed logic applications [Internet]. Journal of Integrated Circuits and Systems. 2022 ; 17( 2): 1-9.[citado 2024 set. 15 ] Available from: https://doi.org/10.29292/jics.v17i2.617

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024