Learning to estimate multivariate uncertainty in deep pedestrian trajectory prediction (2023)
Source: Proceedings. Conference titles: Latin American Robotics Symposium - LARS. Unidade: EESC
Subjects: VEÍCULOS AUTÔNOMOS, TRAJETÓRIA, ENGENHARIA ELÉTRICA
ABNT
CASTRO, Augusto Ribeiro e GRASSI JÚNIOR, Valdir. Learning to estimate multivariate uncertainty in deep pedestrian trajectory prediction. 2023, Anais.. Piscataway, NJ, USA: Escola de Engenharia de São Carlos, Universidade de São Paulo, 2023. Disponível em: https://dx.doi.org/10.1109/LARS/SBR/WRE59448.2023.10333011. Acesso em: 03 nov. 2024.APA
Castro, A. R., & Grassi Júnior, V. (2023). Learning to estimate multivariate uncertainty in deep pedestrian trajectory prediction. In Proceedings. Piscataway, NJ, USA: Escola de Engenharia de São Carlos, Universidade de São Paulo. doi:10.1109/LARS/SBR/WRE59448.2023.10333011NLM
Castro AR, Grassi Júnior V. Learning to estimate multivariate uncertainty in deep pedestrian trajectory prediction [Internet]. Proceedings. 2023 ;[citado 2024 nov. 03 ] Available from: https://dx.doi.org/10.1109/LARS/SBR/WRE59448.2023.10333011Vancouver
Castro AR, Grassi Júnior V. Learning to estimate multivariate uncertainty in deep pedestrian trajectory prediction [Internet]. Proceedings. 2023 ;[citado 2024 nov. 03 ] Available from: https://dx.doi.org/10.1109/LARS/SBR/WRE59448.2023.10333011