Exportar registro bibliográfico


Metrics:

Bioaccessibility of minerals in combinations of biofortified foods with Fe, Zn and vitamin A (2021)

  • Authors:
  • USP affiliated authors: BRAZACA, SOLANGE GUIDOLIN CANNIATTI - ESALQ ; TORRES, LARISSA CATELLI ROCHA - CENA
  • Unidades: ESALQ; CENA
  • DOI: 10.1007/s13197-021-04966-0
  • Subjects: ALIMENTOS FORTIFICADOS; CAROTENOIDES; CAUPI; FERRO; MANDIOCA; MINERAIS; VITAMINA A; ZINCO
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s13197-021-04966-0 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      BRIGIDE, Priscila; TORRES, Larissa Catelli Rocha; CANNIATI BRAZACA, Solange Guidolin; FIGLIUZZI, Renata Silva; COSTA, Neuza Maria Brunoro. Bioaccessibility of minerals in combinations of biofortified foods with Fe, Zn and vitamin A. Journal of Food Science and Technology, New Delhi, 2021. Disponível em: < https://doi.org/10.1007/s13197-021-04966-0 > DOI: 10.1007/s13197-021-04966-0.
    • APA

      Brigide, P., Torres, L. C. R., Canniati Brazaca, S. G., Figliuzzi, R. S., & Costa, N. M. B. (2021). Bioaccessibility of minerals in combinations of biofortified foods with Fe, Zn and vitamin A. Journal of Food Science and Technology. doi:10.1007/s13197-021-04966-0
    • NLM

      Brigide P, Torres LCR, Canniati Brazaca SG, Figliuzzi RS, Costa NMB. Bioaccessibility of minerals in combinations of biofortified foods with Fe, Zn and vitamin A [Internet]. Journal of Food Science and Technology. 2021 ;Available from: https://doi.org/10.1007/s13197-021-04966-0
    • Vancouver

      Brigide P, Torres LCR, Canniati Brazaca SG, Figliuzzi RS, Costa NMB. Bioaccessibility of minerals in combinations of biofortified foods with Fe, Zn and vitamin A [Internet]. Journal of Food Science and Technology. 2021 ;Available from: https://doi.org/10.1007/s13197-021-04966-0

    Referências citadas na obra
    AntunesVazTostesSant’anaFariaToledoCosta PTMDGCTRARCLNBM (2019) Bioavailability of Iron and the Influence of Vitamin a in BiofortifiedFoods. Agro 9:1–15. https://doi.org/10.3390/agronomy9120777
    AOAC (2005) Official method of analysis, 18th edn. Association of officiating analytical chemists, Washington DC
    Beebe S, Gonzalez AV, Rengifo J (2000) Research on trace minerals in the common bean. Food Nutr Bull 21:387–391
    BRASIL. MINISTÉRIO DA SAÚDE. AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA. Portaria nº 27, de 13 de janeiro de 1998. Aprova o Regulamento Técnico referente à Informação Nutricional Complementar (declarações relacionadas ao conteúdo de nutrientes). Disponível em: http://www.anvisa.gov.br/e-legis/. Accessed on August 26, 2008
    Campos Vega R, Loarca-Piña G, OomaH BD (2010) Minor components of pulses and their potential impact on human health. Food Res Inter 43:461–482
    Carvalho LM, Corrêa MM, Pereira EJ, Nutti MR, Carvalho JL, Ribeiro EM, Freitas SC (2012) Iron and zinc retention in common beans (Phaseolus vulgaris L.) after home cooking. Food Nutr Res 56:15618. https://doi.org/10.3402/fnr.v56i0.15618
    CarvalhoOrtizCarvalhoSmirdeleNeves LMJGMDJLVLFSC (2017) Carotenoids in yellow sweet potatoes, pumpkins and yellow sweet cassava. In: Goran SN (ed) Dragan J. IntechOpen, London
    Corrêa SR, Brigide P, Vaz-Tostes MG, Costa NMB (2020) Cultivars of biofortified cowpea and sweet potato: Bioavailability of iron and interaction with vitamin A in vivo and in vitro. J FoodSci 85:816–823. https://doi.org/10.1111/1750-3841.15064
    HARVEST PLUS. Crops. Available at: http://www.harvestplus.org/content/crops. Accessed in March 2016
    Ramírez Cárdenas, L de los Á (2006) Biodisponibilidade de zinco e de ferro valor nutricional e funcional de diferentes cultivares de feijãocomum submetidos a tratamentos domésticos. Doctoral Thesis. Universidade Federal de Viçosa. Brazil
    Dias LT, Leonel M (2006) Caracterização físico-química de farinhas de mandioca de diferentes localidades do Brasil. CiênAgrotec 4:692–700
    Faria MA, Araújo A, Pinto E, Oliveira C, Oliva-Teles MT, Almeida A, Delerue- Matos C, Ferreira IMPLVO (2018) Bioaccessibility and intestinal uptake of minerals from different types of home-cooked and ready-to-eat beans. J FunctFoods 50:201–209. https://doi.org/10.1016/j.jff.2018.10.001
    Frontela C, Scarino ML, Ferruzza S, Ros G, Martínez C (2009) Effect of dephynization on bioavailability of iron, calcium and zinc from infant cereals assessed in the Caco-2 cell model. World J Gastroenterol 15(16):1977–1984. https://doi.org/10.3748/wjg.15.1977
    Gregorio GB (2002) Progress in breeding for trace minerals in staple crops. JNutr 132:500S-502S. https://doi.org/10.1093/jn/132.3.500S
    Haas JD, Luna SV, Lung’ahoM G, Wenger MJ, Murray-Kolb LE, Beebe S, GahutuJ B, EgliI M (2016) Consuming iron biofortified beans increases iron status in Rwandan women after 128 days in a randomized controlled feeding trial. The J of Nutr 146:1586–1592. https://doi.org/10.3945/jn.115.224741
    Hallberg L, Brune M, Rossander L (1989) Iron absorption in man: ascorbic acid and dose-dependent inhibition by phytate. Am J ClinNutr 49:140–144. https://doi.org/10.1093/ajcn/49.1.140
    Hayat I, Ahmad A, Masud T, Ahmed A, Bashir S (2014) Nutritional and health perspectives of beans (Phaseolus vulgaris L.): an overview. Crit Rev Food SciNutr 54(5):580–592. https://doi.org/10.1080/10408398.2011.596639
    Israr B, Frazier RA, Gordon MH (2013) Effects of phytate and minerals on the bioavailability of oxalate from food. FoodChem 3:1690–1693. https://doi.org/10.1016/j.foodchem.2013.04.130
    Kruger J, Minnis-Ndimba R, Mtshali C, Minnaar A (2014) Novel in situ evaluation of therole minerals play in the development of the hard-to-cook (HTC) defect of cowpeas and its effect on the in vitromineral bioaccessibility. Food Chem 174:365–371. https://doi.org/10.1016/jfoodchem2014.10.134
    Ma G, Jin Y, Piao J, Kok F, Guusje B, Jacobsen E (2005) Phytate, calcium, iron, and zinc contents and their molar ratios in foods commonly consumed in China. J of Agric and Food Chem 53:10285–10290. https://doi.org/10.1021/jf052051r
    Megías C, Yust M, Pedroche J, Lquari H, Giron-Calle J, Alaiz M (2009) Purification of an ACE inhibitory peptide after hydrolysis of sunflower (Helianthus annuus L.) protein isolates. J of Agric Food Chem 52:1928–1932. https://doi.org/10.1021/jf034707r
    Nair KM, Augustine LF (2018) Food synergies for improving bioavailability of micronutrients from plant foods. Food Chem 238:180–185
    Oliveira ARG, Carvalho LMJ, Nutti MR, Carvalho JL (2010) Assessment anddegradation study of total carotenoid and β-carotene in bitter yellow cassava varieties. AfrJ Food Sci 4:148–215
    Ramírez-OjedaMoreno-RojasCámara-Martos AMRF (2018) Mineral and trace element content in legumes (lentils, chickpeas and beans): Bioaccesibility and probabilistic assessment of the dietary intake. J of Food Compos Anal 73:17–28. https://doi.org/10.1016/j.jfca.2018.07.007
    Rocha M D M R (2008)Avaliação dos conteúdos de proteína, ferro e zinco em germoplasma elite de feijão-caupi. Embrapa Meio-Norte.Brasil. Technical Release
    Rodriguez ADB (1999) A GuidetoCarotenoidAnalysis in foods. International Life Sciences Institute (ILSI) Press, Washington
    Sant´AnaAntunesReisVazTostesMeiraCosta CTPTTCMGEFNMB (2019) Bio accessibility and bioavailability of iron in biofortified germinated cowpea. J Sci Food Agric 1:1–10
    Silva SMS, Maia JM, Araújo ZB, Freire Filho FRl (2002) Composição Química de 45 Genótipos de Feijão-Caupi (Vignaunguiculata (L.) Walp.2 .Teresina, PI. Brasil. Technical release
    Singh P, Prasad S, Aalbersberg W (2016) Bioavailability of Fe and Zn in selected legumes, cereals, meat and milk products consumed in Fiji. Food Chem 207:125–131
    Souza CS, Oliveira IC,Rufino CPB, Flores PS, Lessa LS (2015)Avaliação de variedades de mandioca de mesa com polpa amarela, nas condições edafoclimáticas do Acre.In: 16 Congresso Brasileiro de Mandioca. Brasil
    Sperotto RA, Ricachenevsky FK (2017) Common bean Fe biofortification using model species’ lessons Front. Plant Sci 8:2187. https://doi.org/10.3389/fpls.2017.02187
    TakoReedAnandaramanBeebeHartGlahnn ESASEJJRP (2015) Studies of cream seeded carioca beans (phaseolus vulgaris L.) from a Rwandan efficacy trial: in vitro and in vivo screening tools reflect human studies and predictbeneficial results from iron biofortified beans. PLoS ONE. https://doi.org/10.1371/journal.pone.0138479
    TurnlundKingKeyesGongMichel JRJCWRBMC (1984) A stable isotope study of zinc absorption in young men: effects of phytate and alpha-cellulose. Am J Clin Nutr 40:1071–1077. https://doi.org/10.1093/ajcn/40.5.1071
    Vilakati N, Taylor JRN, MacIntyre U, Kruger J (2016) Effects of processing and addition of a cowpea leaf relish on the iron and zinc nutritive value of a ready-to-eat sorghum cowpea porridge aimed at young children. LWT-Food Sci Tech. https://doi.org/10.1016/j.lwt.2016.06.022
    WHO/CDC (2014) Methodological approaches to estimating global and regional prevalences of vitamin and mineral deficiencies report on the Joint World Health Organization/US centers for disease control and prevention technical consultation. Atlanta, USA, 7–9 December 2010. Geneva: World Health Organization

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021