Filtros : "PROGRAMAÇÃO MATEMÁTICA" "IME-MAP" Removido: "Springer" Limpar

Filtros



Limitar por data


  • Fonte: Optimization. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    Disponível em 19/08/2026Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARMIJO, Nicolas Esteban Fuentealba e BELLO-CRUZ, Yunier e HAESER, Gabriel. A semi-smooth Newton method for general projection equations applied to the nearest correlation matrix problem. Optimization, 2025Tradução . . Disponível em: https://doi.org/10.1080/02331934.2025.2547716. Acesso em: 07 nov. 2025.
    • APA

      Armijo, N. E. F., Bello-Cruz, Y., & Haeser, G. (2025). A semi-smooth Newton method for general projection equations applied to the nearest correlation matrix problem. Optimization. doi:10.1080/02331934.2025.2547716
    • NLM

      Armijo NEF, Bello-Cruz Y, Haeser G. A semi-smooth Newton method for general projection equations applied to the nearest correlation matrix problem [Internet]. Optimization. 2025 ;[citado 2025 nov. 07 ] Available from: https://doi.org/10.1080/02331934.2025.2547716
    • Vancouver

      Armijo NEF, Bello-Cruz Y, Haeser G. A semi-smooth Newton method for general projection equations applied to the nearest correlation matrix problem [Internet]. Optimization. 2025 ;[citado 2025 nov. 07 ] Available from: https://doi.org/10.1080/02331934.2025.2547716
  • Fonte: SIAM Journal on Optimization. Unidade: IME

    Assuntos: PROGRAMAÇÃO MATEMÁTICA, TEORIA DOS JOGOS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, Luis Felipe Cesar da Rocha e HAESER, Gabriel e KOLOSSOSKI, Oliver. A Jacobi-type Newton method for Nash equilibrium problems with descent guarantees. SIAM Journal on Optimization, v. 35, n. 3, p. 1761-1791, 2025Tradução . . Disponível em: https://doi.org/10.1137/23M1575639. Acesso em: 07 nov. 2025.
    • APA

      Bueno, L. F. C. da R., Haeser, G., & Kolossoski, O. (2025). A Jacobi-type Newton method for Nash equilibrium problems with descent guarantees. SIAM Journal on Optimization, 35( 3), 1761-1791. doi:10.1137/23M1575639
    • NLM

      Bueno LFC da R, Haeser G, Kolossoski O. A Jacobi-type Newton method for Nash equilibrium problems with descent guarantees [Internet]. SIAM Journal on Optimization. 2025 ; 35( 3): 1761-1791.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1137/23M1575639
    • Vancouver

      Bueno LFC da R, Haeser G, Kolossoski O. A Jacobi-type Newton method for Nash equilibrium problems with descent guarantees [Internet]. SIAM Journal on Optimization. 2025 ; 35( 3): 1761-1791.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1137/23M1575639
  • Fonte: Journal of Optimization Theory and Applications. Unidade: IME

    Assuntos: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR, ANÁLISE NUMÉRICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Global convergence of a second-order augmented lagrangian method under an error bound condition. Journal of Optimization Theory and Applications, v. 206, n. artigo 54, p. 1-30, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10957-025-02731-3. Acesso em: 07 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Prado, R. W., Schuverdt, M. L., & Secchin, L. D. (2025). Global convergence of a second-order augmented lagrangian method under an error bound condition. Journal of Optimization Theory and Applications, 206( artigo 54), 1-30. doi:10.1007/s10957-025-02731-3
    • NLM

      Andreani R, Haeser G, Prado RW, Schuverdt ML, Secchin LD. Global convergence of a second-order augmented lagrangian method under an error bound condition [Internet]. Journal of Optimization Theory and Applications. 2025 ; 206( artigo 54): 1-30.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-025-02731-3
    • Vancouver

      Andreani R, Haeser G, Prado RW, Schuverdt ML, Secchin LD. Global convergence of a second-order augmented lagrangian method under an error bound condition [Internet]. Journal of Optimization Theory and Applications. 2025 ; 206( artigo 54): 1-30.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-025-02731-3
  • Fonte: Notebook of abstracts. Nome do evento: Brazilian Workshop on Continuous Optimization - BrazOpt. Unidade: IME

    Assuntos: PROGRAMAÇÃO MATEMÁTICA, TEORIA DOS JOGOS

    Versão PublicadaAcesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, Luís Felipe e HAESER, Gabriel e KOLOSSOSKI, Oliver. A Jacobi-type Newton method for Nash equilibrium problems with descent guarantees. 2024, Anais.. Rio de Janeiro: FGV/EMAp, 2024. Disponível em: https://eventos.fgv.br/sites/eventos.fgv.br/files/arquivos/u1314/abst_notebook_vf2.pdf. Acesso em: 07 nov. 2025.
    • APA

      Bueno, L. F., Haeser, G., & Kolossoski, O. (2024). A Jacobi-type Newton method for Nash equilibrium problems with descent guarantees. In Notebook of abstracts. Rio de Janeiro: FGV/EMAp. Recuperado de https://eventos.fgv.br/sites/eventos.fgv.br/files/arquivos/u1314/abst_notebook_vf2.pdf
    • NLM

      Bueno LF, Haeser G, Kolossoski O. A Jacobi-type Newton method for Nash equilibrium problems with descent guarantees [Internet]. Notebook of abstracts. 2024 ;[citado 2025 nov. 07 ] Available from: https://eventos.fgv.br/sites/eventos.fgv.br/files/arquivos/u1314/abst_notebook_vf2.pdf
    • Vancouver

      Bueno LF, Haeser G, Kolossoski O. A Jacobi-type Newton method for Nash equilibrium problems with descent guarantees [Internet]. Notebook of abstracts. 2024 ;[citado 2025 nov. 07 ] Available from: https://eventos.fgv.br/sites/eventos.fgv.br/files/arquivos/u1314/abst_notebook_vf2.pdf
  • Fonte: Set-Valued and Variational Analysis. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUKUDA, Ellen Hidemi e HAESER, Gabriel e MITO, Leonardo. On the weak second-order optimality condition for nonlinear semidefinite and second-order cone programming. Set-Valued and Variational Analysis, v. 31, n. artigo 15, p. 1-28, 2023Tradução . . Disponível em: https://doi.org/10.1007/s11228-023-00676-1. Acesso em: 07 nov. 2025.
    • APA

      Fukuda, E. H., Haeser, G., & Mito, L. (2023). On the weak second-order optimality condition for nonlinear semidefinite and second-order cone programming. Set-Valued and Variational Analysis, 31( artigo 15), 1-28. doi:10.1007/s11228-023-00676-1
    • NLM

      Fukuda EH, Haeser G, Mito L. On the weak second-order optimality condition for nonlinear semidefinite and second-order cone programming [Internet]. Set-Valued and Variational Analysis. 2023 ; 31( artigo 15): 1-28.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s11228-023-00676-1
    • Vancouver

      Fukuda EH, Haeser G, Mito L. On the weak second-order optimality condition for nonlinear semidefinite and second-order cone programming [Internet]. Set-Valued and Variational Analysis. 2023 ; 31( artigo 15): 1-28.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s11228-023-00676-1
  • Fonte: Linear Algebra and its Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARMIJO, Nicolas F. e BELLO-CRUZ, Yunier e HAESER, Gabriel. On the convergence of iterative schemes for solving a piecewise linear system of equations. Linear Algebra and its Applications, v. 665, p. 291-314, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2023.02.001. Acesso em: 07 nov. 2025.
    • APA

      Armijo, N. F., Bello-Cruz, Y., & Haeser, G. (2023). On the convergence of iterative schemes for solving a piecewise linear system of equations. Linear Algebra and its Applications, 665, 291-314. doi:10.1016/j.laa.2023.02.001
    • NLM

      Armijo NF, Bello-Cruz Y, Haeser G. On the convergence of iterative schemes for solving a piecewise linear system of equations [Internet]. Linear Algebra and its Applications. 2023 ; 665 291-314.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1016/j.laa.2023.02.001
    • Vancouver

      Armijo NF, Bello-Cruz Y, Haeser G. On the convergence of iterative schemes for solving a piecewise linear system of equations [Internet]. Linear Algebra and its Applications. 2023 ; 665 291-314.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1016/j.laa.2023.02.001
  • Fonte: Anais. Nome do evento: Simpósio Brasileiro de Pesquisa Operacional - SBPO. Unidade: IME

    Assuntos: PROGRAMAÇÃO MATEMÁTICA, TEORIA DOS JOGOS

    Versão PublicadaAcesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, Luís Felipe e HAESER, Gabriel e KOLOSSOSKI, Oliver. Um método de descida para equilíbrio de Nash. 2023, Anais.. Rio de Janeiro: SOBRAPO, 2023. Disponível em: https://proceedings.science/sbpo-2023/trabalhos/um-metodo-de-descida-para-equilibrio-de-nash?lang=pt-br&check_logged_in=1#download-paper. Acesso em: 07 nov. 2025.
    • APA

      Bueno, L. F., Haeser, G., & Kolossoski, O. (2023). Um método de descida para equilíbrio de Nash. In Anais. Rio de Janeiro: SOBRAPO. Recuperado de https://proceedings.science/sbpo-2023/trabalhos/um-metodo-de-descida-para-equilibrio-de-nash?lang=pt-br&check_logged_in=1#download-paper
    • NLM

      Bueno LF, Haeser G, Kolossoski O. Um método de descida para equilíbrio de Nash [Internet]. Anais. 2023 ;[citado 2025 nov. 07 ] Available from: https://proceedings.science/sbpo-2023/trabalhos/um-metodo-de-descida-para-equilibrio-de-nash?lang=pt-br&check_logged_in=1#download-paper
    • Vancouver

      Bueno LF, Haeser G, Kolossoski O. Um método de descida para equilíbrio de Nash [Internet]. Anais. 2023 ;[citado 2025 nov. 07 ] Available from: https://proceedings.science/sbpo-2023/trabalhos/um-metodo-de-descida-para-equilibrio-de-nash?lang=pt-br&check_logged_in=1#download-paper
  • Fonte: Mathematics of Operations Research. Unidade: IME

    Assuntos: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. On optimality conditions for nonlinear conic programming. Mathematics of Operations Research, v. 47, n. 3, p. 2160-2185, 2022Tradução . . Disponível em: https://doi.org/10.1287/moor.2021.1203. Acesso em: 07 nov. 2025.
    • APA

      Andreani, R., Gómez, W., Haeser, G., Mito, L., & Ramos, A. (2022). On optimality conditions for nonlinear conic programming. Mathematics of Operations Research, 47( 3), 2160-2185. doi:10.1287/moor.2021.1203
    • NLM

      Andreani R, Gómez W, Haeser G, Mito L, Ramos A. On optimality conditions for nonlinear conic programming [Internet]. Mathematics of Operations Research. 2022 ; 47( 3): 2160-2185.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1287/moor.2021.1203
    • Vancouver

      Andreani R, Gómez W, Haeser G, Mito L, Ramos A. On optimality conditions for nonlinear conic programming [Internet]. Mathematics of Operations Research. 2022 ; 47( 3): 2160-2185.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1287/moor.2021.1203
  • Fonte: Journal of Optimization Theory and Applications. Unidade: IME

    Assuntos: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming. Journal of Optimization Theory and Applications, v. 195, p. 42-78, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10957-022-02056-5. Acesso em: 07 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Mito, L., Ramírez, C. H., & Silveira, T. P. da. (2022). Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming. Journal of Optimization Theory and Applications, 195, 42-78. doi:10.1007/s10957-022-02056-5
    • NLM

      Andreani R, Haeser G, Mito L, Ramírez CH, Silveira TP da. Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming [Internet]. Journal of Optimization Theory and Applications. 2022 ; 195 42-78.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-022-02056-5
    • Vancouver

      Andreani R, Haeser G, Mito L, Ramírez CH, Silveira TP da. Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming [Internet]. Journal of Optimization Theory and Applications. 2022 ; 195 42-78.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-022-02056-5
  • Fonte: Mathematical Programming Computation. Unidade: IME

    Assuntos: OTIMIZAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR, MÉTODOS NUMÉRICOS

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees. Mathematical Programming Computation, v. 14, n. 1, p. 121-146, 2022Tradução . . Disponível em: https://doi.org/10.1007/s12532-021-00207-9. Acesso em: 07 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Schuverdt, M. L., Secchin, L. D., & Silva e Silva, P. J. (2022). On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees. Mathematical Programming Computation, 14( 1), 121-146. doi:10.1007/s12532-021-00207-9
    • NLM

      Andreani R, Haeser G, Schuverdt ML, Secchin LD, Silva e Silva PJ. On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees [Internet]. Mathematical Programming Computation. 2022 ; 14( 1): 121-146.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s12532-021-00207-9
    • Vancouver

      Andreani R, Haeser G, Schuverdt ML, Secchin LD, Silva e Silva PJ. On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees [Internet]. Mathematical Programming Computation. 2022 ; 14( 1): 121-146.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s12532-021-00207-9
  • Fonte: Numerical Algorithms. Unidade: IME

    Assuntos: PROGRAMAÇÃO MATEMÁTICA, OTIMIZAÇÃO NÃO LINEAR, MÉTODOS NUMÉRICOS

    Versão AceitaAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. On the best achievable quality of limit points of augmented Lagrangian schemes. Numerical Algorithms, v. 90, n. 2, p. 851-877, 2022Tradução . . Disponível em: https://doi.org/10.1007/s11075-021-01212-8. Acesso em: 07 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Mito, L., Ramos, A., & Secchin, L. D. (2022). On the best achievable quality of limit points of augmented Lagrangian schemes. Numerical Algorithms, 90( 2), 851-877. doi:10.1007/s11075-021-01212-8
    • NLM

      Andreani R, Haeser G, Mito L, Ramos A, Secchin LD. On the best achievable quality of limit points of augmented Lagrangian schemes [Internet]. Numerical Algorithms. 2022 ; 90( 2): 851-877.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s11075-021-01212-8
    • Vancouver

      Andreani R, Haeser G, Mito L, Ramos A, Secchin LD. On the best achievable quality of limit points of augmented Lagrangian schemes [Internet]. Numerical Algorithms. 2022 ; 90( 2): 851-877.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s11075-021-01212-8
  • Fonte: Mathematical Programming. Unidade: IME

    Assuntos: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO CONVEXA, PROGRAMAÇÃO NÃO LINEAR

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel e HINDER, Oliver e YE, Yinyu. On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods. Mathematical Programming, v. 186, n. 1-2, p. 257-288, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10107-019-01454-4. Acesso em: 07 nov. 2025.
    • APA

      Haeser, G., Hinder, O., & Ye, Y. (2021). On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods. Mathematical Programming, 186( 1-2), 257-288. doi:10.1007/s10107-019-01454-4
    • NLM

      Haeser G, Hinder O, Ye Y. On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods [Internet]. Mathematical Programming. 2021 ; 186( 1-2): 257-288.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10107-019-01454-4
    • Vancouver

      Haeser G, Hinder O, Ye Y. On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods [Internet]. Mathematical Programming. 2021 ; 186( 1-2): 257-288.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10107-019-01454-4
  • Fonte: Journal of Optimization Theory and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel e RAMOS, Alberto. Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization. Journal of Optimization Theory and Applications, v. 187, n. 2, p. 469-487, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10957-020-01749-z. Acesso em: 07 nov. 2025.
    • APA

      Haeser, G., & Ramos, A. (2020). Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization. Journal of Optimization Theory and Applications, 187( 2), 469-487. doi:10.1007/s10957-020-01749-z
    • NLM

      Haeser G, Ramos A. Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization [Internet]. Journal of Optimization Theory and Applications. 2020 ; 187( 2): 469-487.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-020-01749-z
    • Vancouver

      Haeser G, Ramos A. Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization [Internet]. Journal of Optimization Theory and Applications. 2020 ; 187( 2): 469-487.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-020-01749-z
  • Fonte: Computational Optimization and Applications. Nome do evento: Brazilian Workshop on Continuous Optimization. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, L. F et al. An Augmented Lagrangian method for quasi-equilibrium problems. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1007/s10589-020-00180-4. Acesso em: 07 nov. 2025. , 2020
    • APA

      Bueno, L. F., Haeser, G., Lara, F., & Rojas, F. N. (2020). An Augmented Lagrangian method for quasi-equilibrium problems. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1007/s10589-020-00180-4
    • NLM

      Bueno LF, Haeser G, Lara F, Rojas FN. An Augmented Lagrangian method for quasi-equilibrium problems [Internet]. Computational Optimization and Applications. 2020 ; 76( 3): 737-766.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10589-020-00180-4
    • Vancouver

      Bueno LF, Haeser G, Lara F, Rojas FN. An Augmented Lagrangian method for quasi-equilibrium problems [Internet]. Computational Optimization and Applications. 2020 ; 76( 3): 737-766.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10589-020-00180-4
  • Fonte: Journal of Optimization Theory and Applications. Unidade: IME

    Assuntos: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel e RAMOS, A. New constraint qualifications with second-order properties in nonlinear optimization. Journal of Optimization Theory and Applications, v. 184, p. 494-506, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10957-019-01603-x. Acesso em: 07 nov. 2025.
    • APA

      Haeser, G., & Ramos, A. (2020). New constraint qualifications with second-order properties in nonlinear optimization. Journal of Optimization Theory and Applications, 184, 494-506. doi:10.1007/s10957-019-01603-x
    • NLM

      Haeser G, Ramos A. New constraint qualifications with second-order properties in nonlinear optimization [Internet]. Journal of Optimization Theory and Applications. 2020 ; 184 494-506.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-019-01603-x
    • Vancouver

      Haeser G, Ramos A. New constraint qualifications with second-order properties in nonlinear optimization [Internet]. Journal of Optimization Theory and Applications. 2020 ; 184 494-506.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-019-01603-x
  • Fonte: Computational Optimization and Applications. Nome do evento: Brazilian Workshop on Continuous Optimization. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, Luís Felipe e HAESER, Gabriel e SANTOS, Luiz-Rafael. Towards an efficient augmented Lagrangian method for convex quadratic programming. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1007/s10589-019-00161-2. Acesso em: 07 nov. 2025. , 2020
    • APA

      Bueno, L. F., Haeser, G., & Santos, L. -R. (2020). Towards an efficient augmented Lagrangian method for convex quadratic programming. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1007/s10589-019-00161-2
    • NLM

      Bueno LF, Haeser G, Santos L-R. Towards an efficient augmented Lagrangian method for convex quadratic programming [Internet]. Computational Optimization and Applications. 2020 ; 76( 3): 767-800.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10589-019-00161-2
    • Vancouver

      Bueno LF, Haeser G, Santos L-R. Towards an efficient augmented Lagrangian method for convex quadratic programming [Internet]. Computational Optimization and Applications. 2020 ; 76( 3): 767-800.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10589-019-00161-2
  • Fonte: Mathematical Programming. Unidade: IME

    Assuntos: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto e HAESER, Gabriel e VIANA, Daiana S. Optimality conditions and global convergence for nonlinear semidefinite programming. Mathematical Programming, v. 180, n. 1-2, p. 203-235, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10107-018-1354-5. Acesso em: 07 nov. 2025.
    • APA

      Andreani, R., Haeser, G., & Viana, D. S. (2020). Optimality conditions and global convergence for nonlinear semidefinite programming. Mathematical Programming, 180( 1-2), 203-235. doi:10.1007/s10107-018-1354-5
    • NLM

      Andreani R, Haeser G, Viana DS. Optimality conditions and global convergence for nonlinear semidefinite programming [Internet]. Mathematical Programming. 2020 ; 180( 1-2): 203-235.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10107-018-1354-5
    • Vancouver

      Andreani R, Haeser G, Viana DS. Optimality conditions and global convergence for nonlinear semidefinite programming [Internet]. Mathematical Programming. 2020 ; 180( 1-2): 203-235.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10107-018-1354-5
  • Fonte: SIAM Journal on Optimization. Unidade: IME

    Assuntos: PROGRAMAÇÃO NÃO LINEAR, TEOREMA DE EXISTÊNCIA, PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. New sequential optimality conditions for mathematical programs with complementarity constraints and algorithmic consequences. SIAM Journal on Optimization, v. 29, n. 4, p. 3201-3230, 2019Tradução . . Disponível em: https://doi.org/10.1137/18M121040X. Acesso em: 07 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Secchin, L. D., & Silva, P. J. S. (2019). New sequential optimality conditions for mathematical programs with complementarity constraints and algorithmic consequences. SIAM Journal on Optimization, 29( 4), 3201-3230. doi:10.1137/18M121040X
    • NLM

      Andreani R, Haeser G, Secchin LD, Silva PJS. New sequential optimality conditions for mathematical programs with complementarity constraints and algorithmic consequences [Internet]. SIAM Journal on Optimization. 2019 ; 29( 4): 3201-3230.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1137/18M121040X
    • Vancouver

      Andreani R, Haeser G, Secchin LD, Silva PJS. New sequential optimality conditions for mathematical programs with complementarity constraints and algorithmic consequences [Internet]. SIAM Journal on Optimization. 2019 ; 29( 4): 3201-3230.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1137/18M121040X
  • Fonte: SIAM Journal on Optimization. Unidade: IME

    Assuntos: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR, TEORIA DOS JOGOS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, Luís Felipe e HAESER, Gabriel e ROJAS, Frank Navarro. Optimality conditions and constraint qualifications for generalized Nash equilibrium problems and their practical implications. SIAM Journal on Optimization, v. 29, n. 1, p. 31-54, 2019Tradução . . Disponível em: https://doi.org/10.1137/17m1162524. Acesso em: 07 nov. 2025.
    • APA

      Bueno, L. F., Haeser, G., & Rojas, F. N. (2019). Optimality conditions and constraint qualifications for generalized Nash equilibrium problems and their practical implications. SIAM Journal on Optimization, 29( 1), 31-54. doi:10.1137/17m1162524
    • NLM

      Bueno LF, Haeser G, Rojas FN. Optimality conditions and constraint qualifications for generalized Nash equilibrium problems and their practical implications [Internet]. SIAM Journal on Optimization. 2019 ; 29( 1): 31-54.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1137/17m1162524
    • Vancouver

      Bueno LF, Haeser G, Rojas FN. Optimality conditions and constraint qualifications for generalized Nash equilibrium problems and their practical implications [Internet]. SIAM Journal on Optimization. 2019 ; 29( 1): 31-54.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1137/17m1162524
  • Fonte: Mathematical Programming. Unidade: IME

    Assuntos: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel e LIU, Hongcheng e YE, Yinyu. Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary. Mathematical Programming, v. 178, n. 1-2, p. 263-299, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10107-018-1290-4. Acesso em: 07 nov. 2025.
    • APA

      Haeser, G., Liu, H., & Ye, Y. (2019). Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary. Mathematical Programming, 178( 1-2), 263-299. doi:10.1007/s10107-018-1290-4
    • NLM

      Haeser G, Liu H, Ye Y. Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary [Internet]. Mathematical Programming. 2019 ; 178( 1-2): 263-299.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10107-018-1290-4
    • Vancouver

      Haeser G, Liu H, Ye Y. Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary [Internet]. Mathematical Programming. 2019 ; 178( 1-2): 263-299.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10107-018-1290-4

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025