Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization (2020)
- Authors:
- Autor USP: HAESER, GABRIEL - IME
- Unidade: IME
- DOI: 10.1007/s10957-020-01749-z
- Assunto: PROGRAMAÇÃO MATEMÁTICA
- Keywords: Multiobjective optimization; Optimality conditions; Constraint qualifications; Regularity; Weak and strong Kuhn–Tucker condition
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Optimization Theory and Applications
- ISSN: 0022-3239
- Volume/Número/Paginação/Ano: v. 187, n. 2, p. 469-487, 2020
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
HAESER, Gabriel e RAMOS, Alberto. Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization. Journal of Optimization Theory and Applications, v. 187, n. 2, p. 469-487, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10957-020-01749-z. Acesso em: 10 fev. 2026. -
APA
Haeser, G., & Ramos, A. (2020). Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization. Journal of Optimization Theory and Applications, 187( 2), 469-487. doi:10.1007/s10957-020-01749-z -
NLM
Haeser G, Ramos A. Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization [Internet]. Journal of Optimization Theory and Applications. 2020 ; 187( 2): 469-487.[citado 2026 fev. 10 ] Available from: https://doi.org/10.1007/s10957-020-01749-z -
Vancouver
Haeser G, Ramos A. Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization [Internet]. Journal of Optimization Theory and Applications. 2020 ; 187( 2): 469-487.[citado 2026 fev. 10 ] Available from: https://doi.org/10.1007/s10957-020-01749-z - Posto constante para cones de segunda-ordem
- Condições de otimalidade e algoritmos em otimização não linear
- On a conjecture in second-order optimality conditions
- Primal-dual relationship between Levenberg–Marquardt and central trajectories for linearly constrained convex optimization
- Convergence detection for optimization algorithms: approximate-KKT stopping criterion when Lagrange multipliers are not available
- A flexible inexact-restoration method for constrained optimization
- Semismooth Newton method for projection equations [resumo]
- On theory and practice of augmented Lagrangian methods
- Weak notions of nondegeneracy in nonlinear semidefinite programming [abstract]
- Numerical studies on continuous approximations of a cone in an augmented Lagrangian method for nonlinear conic optimization
Informações sobre o DOI: 10.1007/s10957-020-01749-z (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3009024.pdf | |||
| 3009024.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
