Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary (2019)
- Authors:
- Autor USP: HAESER, GABRIEL - IME
- Unidade: IME
- DOI: 10.1007/s10107-018-1290-4
- Subjects: PROGRAMAÇÃO MATEMÁTICA; PROGRAMAÇÃO NÃO LINEAR
- Keywords: constrained optimization; nonconvex programming; interior point method; first order algorithm; nonsmooth problems
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Heidelberg
- Date published: 2019
- Source:
- Título: Mathematical Programming
- ISSN: 0025-5610
- Volume/Número/Paginação/Ano: v. 178, n. 1-2, p. 263-299, 2019
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
HAESER, Gabriel e LIU, Hongcheng e YE, Yinyu. Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary. Mathematical Programming, v. 178, n. 1-2, p. 263-299, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10107-018-1290-4. Acesso em: 09 fev. 2026. -
APA
Haeser, G., Liu, H., & Ye, Y. (2019). Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary. Mathematical Programming, 178( 1-2), 263-299. doi:10.1007/s10107-018-1290-4 -
NLM
Haeser G, Liu H, Ye Y. Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary [Internet]. Mathematical Programming. 2019 ; 178( 1-2): 263-299.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1007/s10107-018-1290-4 -
Vancouver
Haeser G, Liu H, Ye Y. Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary [Internet]. Mathematical Programming. 2019 ; 178( 1-2): 263-299.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1007/s10107-018-1290-4 - Posto constante para cones de segunda-ordem
- Condições de otimalidade e algoritmos em otimização não linear
- On a conjecture in second-order optimality conditions
- Primal-dual relationship between Levenberg–Marquardt and central trajectories for linearly constrained convex optimization
- Convergence detection for optimization algorithms: approximate-KKT stopping criterion when Lagrange multipliers are not available
- A flexible inexact-restoration method for constrained optimization
- On a conjecture in second-order optimality conditions
- Some theoretical limitations of second-order algorithms for smooth constrained optimization
- A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms
- Semismooth Newton method for projection equations [resumo]
Informações sobre o DOI: 10.1007/s10107-018-1290-4 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2889880 (2).pdf | Direct link | ||
| 2889880.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
