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Abstract In this paper we consider the minimization of a continuous function that
is potentially not differentiable or not twice differentiable on the boundary of the
feasible region. By exploiting an interior point technique, we present first- and second-
order optimality conditions for this problem that reduces to classical ones when the
derivative on the boundary is available. For this type of problems, existing necessary
conditions often rely on the notion of subdifferential or become non-trivially weaker
than the KKT condition in the (twice-)differentiable counterpart problems. In contrast,
this paper presents a new set of first- and second-order necessary conditions that are
derived without the use of subdifferential and reduce to exactly the KKT condition
when (twice-)differentiability holds. As a result, these conditions are stronger than
some existing ones considered for the discussed minimization problem when only
non-negativity constraints are present. To solve for these optimality conditions in the
special but important case of linearly constrained problems, we present two novel
interior point trust-region algorithms and show that their worst-case computational
efficiency in achieving the potentially stronger optimality conditions match the best
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known complexity bounds. Since this work considers a more general problem than
those in the literature, our results also indicate that best known existing complexity
bounds are actually held for a wider class of nonlinear programming problems. This
new development is significant since optimality conditions play a fundamental role in
computational optimization and more and more nonlinear and nonconvex problems
need to be solved in practice.

Keywords Constrained optimization - Nonconvex programming - Interior point
method - First order algorithm - Nonsmooth problems

Mathematics Subject Classification 90C30 - 90C51 - 90C60 - 68Q25

1 Introduction
In this paper we are interested in the problem

Minimize f(x), )
subject to Ax = b, x >0,

where A € R”™*" and f : R, — Risacontinuous functionon R} := {x e R" | x >
0} and smooth on R"} , := {x € R" | x > 0}. As a special case of (1), the following
formulation has been popularly studied:

Minimize H(x) +¢ > ', o(x!), )
subjectto x > 0, )
where H is smooth, ¢ is convex, { > 0and 0 < p < 1. A common use of (2) (or
its immediate reformulations) is the problem of high-dimensional learning under the
assumption of sparsity. In such a problem, few data observations are acquired for the
task of recovering a high-dimension signal. Such a task is often done by minimizing
an in-sample statistical loss (a.k.a., fidelity) function H (x) that represents the in-
sample error plus a regularization function ¢ Y/, (p(xf ), which penalizes non-zero
variables to induce sparsity. Theoretical and numerical studies on the efficacies of this
type of models are presented in [29-32,44,46,49,56,57]. Particularly, it is shown by
[30,32,44,46,56,57] that to achieve a sound recovery quality, global optimality to (1)
is not necessary, but some local minima or even stationary points can successfully
recover the high-dimensional signal with high probability. In specific, Liu et al. [44]
shows that solutions satisfying a second-order necessary condition in linear regression
penalized by certain nonconvex (p(xlp ) have very desirable statistical properties. Han
et al. [41] presented a recent application of (2) in designing neural networks for deep
learning, for which go(xip ) = |x|or <p(xip ) = ||lx||? and H is a nonconvex loss function.

Despite various successful and seminal applications, (2) remains a non-trivial prob-
lem to solve due to the usual absence of differentiability or twice-differentiability and
the frequent presence of nonconvexity. As an example, if p < 1, the function ) _"_, xip
is not even directionally differentiable in Gateaux sense when x; = 0 for any i. Sim-
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ilarly, when p < 2, the objective function is not twice differentiable. Meanwhile, in
the training of a neural network, H is usually smooth but nonconvex, as in the case of
[41]. Wang et al. [57] discussed some other cases where H is nonconvex.

To establish first-/second-order necessary optimality conditions for local minimal-
ity, different variants of the KKT condition have been discussed when differentiability
is potentially absent. In such a case, optimality conditions based on the notion of sub-
differential are studied by [1,26,42,52]. Weaker optimality conditions without the use
of subdifferential have been discussed by [10—12,45]. Interested readers are referred
to Bian and Chen [9] for an excellent review on the optimality conditions. In particular,
Bian et al. [12] considers the so-called scaled first-order optimality condition for (2):

dH (x)
Xi
3)(,'

+ipg')xl =0, Vi=1,....n 3)

This condition is evidently weaker than the conditions by [1,26,42,52], in that (3)
always holds at the origin regardless of the objective function. According to Bian and
Chen [9], similar issues apply to the optimality conditions in [10,11,45]. In contrast,
our presented optimality condition does not rely on any form of subdifferential and is
equivalent to the canonical version of the KKT condition when f is smooth. Therefore,
the presented optimality condition is tighter than [10-12,45].

Our research is also motivated by the need of characterizing approximations to
the “exact” necessary condition, since it is generally impossible to solve (1) exactly,
even only for KKT solutions. As a result, the “exact” first- or second-order necessary
conditions must be perturbed to properly characterize the actual solution obtained
through an algorithm. Furthermore, it is desirable to establish a connection between
the optimality condition and its e perturbed version (approximation with inaccuracy
measured by ¢) in order for the complexity results to be meaningful. Approximate
KKT-like conditions in solving nonconvex and nonsmooth optimization have been
proposed by [9,11,12,26]. In view of this gap in the literature, this paper presents
a set of perturbed (first- and second-order) necessary optimality conditions that are
originally defined in terms of a limit of perturbed stationary points. Compare to [9,26],
our perturbed necessary conditions are free from the use of subdifferential, and are
stronger than [11,12].

To compute solutions satisfying our proposed perturbed necessary conditions, we
develop a first- and second-order interior point trust-region (IPTR) algorithms. Both
algorithms work in a general setting that allows for irregularities of the objective
function unaddressed in the literature. In particular, the first-order IPTR allows f to be
not even directionally differentiable. The resulting computational complexity, O (¢ ~2)
in achieving an e-perturbed first-order stationary point (where & > 0), coincides with
the best known complexity for solving smooth nonconvex problems using only first-
order information and assuming the absence of matrix inversion. The second-order
IPTR then applies to a class of problems where second-order derivative may not exist.
The resulting complexity, O (¢ 3/2) and O (¢~3) in achieving an e-perturbed first-order
and second-order stationary point, respectively, equals the best-known complexity for
twice continuously differentiable functions. The corresponding e-perturbed necessary
optimality conditions are in stronger forms than those discussed in [9,11,12,26]. We
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further show that, at the same rate of complexity, the same type of e-perturbed scaled
optimality condition as in [12] can be achieved for a more general set of optimization
problems by our second-order IPTR. For a comprehensive analysis of the IPTR, we
further considered the case where f is a quadratic function and present an alternative
and strengthened analysis for the result in [59]. In such a special case, the IPTR is
substantially accelerated and achieves both the first- and second-order conditions at a
rate of O(s~1).

In contrast, in the literature, for smooth unconstrained optimization, when only first-
order information is accessible and no matrix inversion is involved, the algorithms with
best known complexity bounds take at most O (¢~2) iterations to achieve a first-order
stationary point up to a tolerance €. It is the case of the steepest descent [S0], trust region
methods [38] and the nonlinear stepsize control algorithms [37,53], for instance. When
second-order derivatives are used, the best known complexity is reduced to O (¢ >/?)
for first-order stationarity and, to find a second-order stationary point perturbed by
¢, the best known complexity is 0(8’3). See [15,17,24,28,37,48,51,53]. A different
line of reasoning appeared recently in [2,16], where the second-order information is
iteratively approximated by the first-order one. In this case, the complexity bound
of O(e~7/%) can be achieved for first-order stationarity. We do not pursue this last
type of results. The best complexity bounds known are actually the same for smooth
constrained optimization problems [20,21] (see also the corrigendum [18]) or even
for some nonsmooth constrained cases [10-12,19,36]. Our algorithms will achieve
the best known complexity bounds of 0™, 0(¢73/?) and O(e7?), depending on
the use of second-order information. To our knowledge, our problem of discussion is
more general than most existing developments in the literature.

The rest of the paper is organized in the following way. Section 2 articulates our
optimality condition and Sect. 3 presents our algorithm and complexity analyses.
Finally, Sect. 4 concludes the paper.

Notation Givenn > 1, R"} is the non-negative orthant in R". We denote by R’} , C
R’ the subset of vectors with all coordinates positive. Given x € R”", we denote
diag(x) the diagonal matrix defined by x. When it is clear from confusion, we call
X =diag(x). The vectors ey, ..., e, compose the canonical basis of R" and e € R"
is the vector of ones. The identity matrix of appropriate dimension will be denoted /.
Given a symmetric matrix A, we denote by A > 0 when A is positive semidefinite.
The gradient vector and hessian matrix of a function f : R* — Ratx € R" is
denoted, respectively, by V f(x) and V2 f(x).Weuse | - || and | - ||co to represent the
£2- and £o-norms, respectively. The smallest integer greater than or equal to x € R
is denoted by [x].

2 Optimality condition

Let us consider, for simplicity, a special case of (1) with only bound constraints x > 0
af(x)

and let us assume that foreachi = 1, ..., n, the partial derivative T is not defined

when x; = 0. A so-called scaled first-order optimality condition holds at a local
. *

minimizer x*, given by xi* % =0,i = 1,...,n, where the product is taken to be

zero when the derivative does not exist. See [27].
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Limits of

Local

e-scaled

minimizers .
points (¢ — 01)

Scaled first-order points

Fig. 1 Local minimizers and limits of e-scaled first-order points, ¢ — 07, are scaled first-order points.
Since a scaled first-order point can be seen as a weak necessary optimality condition, this gives little
theoretical justification for considering an e-scaled first-order point, ¢ > 0, as an approximate solution

A point x > 0 with |x,~%| <gforalli =1,...,n,is called an ¢-scaled first-

order point. See [12]. In [11], it was proved that if a sequence {x*¥} C R” is such that
x*¥ = x* and x* is an e;-scaled first-order point for all k with some & — 0T, then x*
is a scaled first-order point. Combining both results, the situation is the one described
in Fig. 1. Algorithms thus proceed to find e-scaled first-order points, with some small
e>0asin[11,12,45].

A first issue with this approach is that there is no analogous of the condition
V f(x) > 0, present in the canonical KKT conditions when derivatives exist every-
where. This is overcome in [11,12,45] by considering the particular objective function
(2), where agi" ) > 400 when x; — 0, or considering an optimality condition based
on the computlation of subdifferentials [9]. A second issue is the fact that there is no
measure of strength of the scaled first-order optimality condition, since, for instance,
it always holds at x = 0, regardless of the objective function. Finally, a third issue is
the lack of relation between local minimizers and limits of e-scaled first-order points,
as suggested by Fig. 1. A similar criticism apply to the scaled second-order condition
considered in [12], and other first-order optimality conditions considered for this class
of problems. See [9] and references therein.

We will overcome these issues by defining first- and second-order optimality con-
ditions that coincide with the canonical first- and second-order KKT conditions under
usual smoothness assumptions, in a much more general framework. The optimality
condition is defined in such a way that it naturally suggests an ¢ perturbed first- and
second-order criterion suitable for the complexity analysis. We also show that, in
the case of linear constraints, our first-order (second-order) optimality condition can
be satisfied by the computation of e-scaled first-order (second-order, respectively)
points, as long as a suitable non-negativity criterion associated with the gradient of
the objective function is fulfilled.

2.1 Necessary optimality conditions based on limits of perturbations

This section presents optimality conditions for a much more general problem than (1).
Specifically, we consider the problem:
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Minimize f(x), @)
subject to h(x) =0, c(x) > 0,

where f : R" — R, A : R" - R™ and ¢ : R" — RP. Defining C° := {x |
c(x) >0}and C := {x | c(x) = 0}, f, h and c are assumed to be continuous on C
and differentiable on C°. For the second-order optimality condition, we assume also
second-order differentiability on C°. For any local solution x* of (4), assume that
there exists a sequence {zF} with ¢ — x* and zF € C° N {x | h(x) = 0} for all
k, which is typically necessary for the application of feasible interior point methods.
Also assume that for any point x € C° N {x | h(x) = 0}, the rank of {Vh; (y)}12 is
constant for all y in a neighborhood of x.

Note that we do not assume any constraint qualification on the whole feasible set,
as only the rank of the gradients of equality constraints must remain constant. Note
also that derivatives of objective function and constraints may not exist when some
ci(x) =0.

Theorem 1 Under the assumptions described above, let x* be a local solution of (4).
Then, there exists a sequence of approximate solutions {x*} C R" and sequences of
approximate Lagrange multipliers {\*} ¢ R™, {s*} Rf_ such that:

(i) ¢c(x¥) > 0, h(x*) = 0 for all k and x* — x*,
(ii) VxR + Y0 25 Vh (k) = 37 skve (k) — o,
(iii) ¢;(x*)sk — Oforalli =1,..., p.

If, in addition, f, h, and c are twice differentiable on C°, then, there exist sequences
0%} € RE and {8} € Ry, 8 — 0% such that

(iv) dT (V2R + 30 A8 V2h (k) — 7 k2o (ch) 4+ 0P 05 ve (b
Vei(xX)T +8:)d > 0, forall d € R with Vhi(x*)Td =0,i=1,...,m.
(v) ci(x*)20F — 0t foralli =1,..., p.

Proof Let us take § > 0 small enough such that the problem
1
Minimize f(x) + yiih I ste(x) >0, h(x) =0, lx —x*|> <8, (5

has x* as its unique global solution.

Let us consider the application of the classical interior penalty method [33] to
problem (5) in the following sense: given a sequence {uix} C Ry, ux > 0 with
wr — 07T, consider for every k the problem:

Minimize ¢ (x) := f(x) + gllx —x*[* = e 3L log(e; (1), ©
subject to c(x) > 0, h(x) = 0, lx — x*||? < 6.

It is well known that a global solution x* exists for all k and that cluster points of
{xk } are global solutions of (5), see [33]. By the last constraint of (6), {xk} is bounded,
which implies that x¥ — x* and thus (i) holds.
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For k large enough, x* is a local solution of
m
L 1 w4
Minimize ¢ (x) := f(x) + Z||x — X" = Zlog(ci (x)), s.t. h(x) = 0.
i=1

Since the constraints h(x) = 0 satisfy a constraint qualification, there exist
Lagrange multipliers A¥ € R™ such that

m
0= Ve (x) + Zkfvhi(xk)
i=1

m P
_ k k w12,k * kp coky Mk ok
= VIR 4 ok = )Pk = x )+;Ath,(x ) ;Ci(xk)vc,(x ),

which gives (ii) and (iii) for s* := Smei=1p.

The second-order differentiability assumption and the constant rank condition
around x* is enough to ensure that (see [40]):

m
0= d" (Vo) + ) A V2hi(*)d
i=1

m P
—dT (sz(xk) + Y MV (R =) sf Ve ()
i=1 i=1
p
+2 c_(’i—i)ﬂci Ve 9T+ 208 —aF =T 4 It~ x*||21> d.
i=1 "

for all d € R” such that Vh; x¥)Td =0,i =1,..., m.

The result follows defining 9,.1‘ = c«(ljckkﬂ foralli =1,..., p, and 8% > 0 as the
largest eigenvalue of 2(x* — x*)(x¥ — x*) T + ||x*¥ — x*||21 for all k, which converges
to zero. O

The optimality conditions immediately suggests definitions for e-perturbed first-
and second-order stationary points:

Definition 1 Given ¢ > 0, a point x € R" is called an e-KKT point for problem (4)
when there exist approximate Lagrange multipliers A € R” and s € Rfi with:

1) h(x) =0,c(x) >0,
(i) IVF) + D0 AiVhi(x) = Y0 siVei(0)lleo < &,
(i) |ci(x)si| <eforalli=1,..., p.

Definition 2 Given ¢ > 0, a point x € R” is called an ¢-KKT2 point for problem
(4) when there exist approximate Lagrange multipliers A € R™ and s € Rf_ and a
parameter 6 € Rﬁ with:
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(1) h(x) =0,c(x) >0,
(i) IVF @)+ D0 AiVhi(x) = >0 siVei(0)lleo < &,
(iii) |ci(x)si| < eforalli =1,..., p,
(v) dT(V2F)+ X0 LV (x) =30 siV2iei () + Y0 6iVei(x)Vei(x) T +
el)d > 0, foralld € R” with Vhj(x)"d =0,i = 1,...,m,
(v) lci(x)%6;| < eforalli =1,..., p.

Note that our first- and second-order optimality conditions given by Theorem 1 can
be equivalently stated as, for all ¢ > 0, there exist ¢-KKT and, respectively, e-KKT2
points, arbitrarily close to x*.

The first-order optimality condition is the generalization of the ones from [3,8] to
non-differentiable problems. In the smooth case, it implies the canonical first-order
KKT conditions under weak constraint qualifications (see [5—7]), in particular, under
linear constraints. The second-order optimality condition is the generalization of the
one from [4,39] to the non-differentiable case and it implies the canonical second-
order KKT conditions defined in terms of the critical subspace under weak constraint
qualifications, in particular, under linear constraints. When the constraints are smooth,
a formulation of the optimality condition in terms of perturbed critical directions is
presented in [14]. We note that the results from [39] can also be generalized without
assuming smoothness on the boundary of C. In particular, without proving feasibility
of the sequence {x¥}, the constant rank assumption can be dropped.

2.2 Sufficient conditions for e-perturbed stationary points

Let us now focus on a special case of (4), where we assume h(x) := Ax — b and
c(x) := x, namely, problem (1). This section then presents sufficient conditions for
&-KKT and e-KKT?2 points as per Definitions 1 and 2.

Proposition 1 Given ¢ > 0, a sufficient condition for a point x € R" to be an e-KKT
point for problem (1) is the existence of . € R™ such that:

(a) Ax =b,x >0,
(b) VFx)+ATL > —e,
() IX(VFx) +ATM) oo < e

Proof Define s := max{0, V f(x) + ATA} in Definition 1 and the claimed result
follows from an easy calculation. O

Proposition 2 Given ¢ > 0, a sufficient condition for a point x € R" to be an ¢-KKT2
point for problem (1) is the existence of . € R™ such that:

(a) Ax =b,x >0,

(b) Vf(x)+ATL> —¢,

() IX(VF@®) + ATVl <&,

(d) d"(XV?f(x)X +el)d > 0 for all d such that AXd = 0.

Proof The claimed satisfaction of (i)—(iii) in Definition 2 follows immediately from
Proposition 1. The following shows (iv) and (v). For all ¢’ > 0 it holds that
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dT(XV?f(x)X + (¢ +¢&))d > 0 forall d # 0 such that AXd = 0. It is well know
that, in this case, there is some p > 0 such that XV? f(x)X + (¢ + /)] + pXATAX
is positive definite (see, for instance, [39, Proposition 2.1]). Since X! is positive
definite, we have V2 f (x) + > ete . el + pATA is positive definite, where ¢; is

2
X

the i-th canonical vector. Taking the limit &’ — 07T and restricting to d with Ad = 0
we have d T (V2 f(x) + 30", %eieiT)d > 0 for all d with Ad = 0 and the result

follows defining 6; := ;—_2,1 =1,...,n. O

3 Interior point trust-region algorithms and computational complexity
for e-perturbed stationary points

We once again focus on (1) and present two interior point trust-region (IPTR) algo-
rithms that are theoretically ensured to generate e-perturbed stationary points. Both
algorithms belong to the class of fully polynomial time approximation schemes. Let
2 .= {x | Ax = b, x > 0} denote the feasible set and £2° := {x | Ax =b,x > 0}
its interior. Assume that the feasible region is bounded and has a non-empty interior.
For any given positive < 1, we consider the potential function

$(x) = f(x) —p Y log(x;). (7
i=1

Note that the gradient of the potential function at x > 0 is
Vo (x) = Vf(x) —uX"'e, where X = diag(x).
Then the IPTR algorithms are summarized in Algorithm 1, where we have a specific

initialization rule; we elect to initialize the algorithm with an approximate analytic
center x* € £2° that satisfies

n n
=Y log(xi) = — Y log(x?) — Co, ®)
i=1 i=1
for all x := (x;) € £2° for some problem-independent constant Cy. Such an initial

solution is efficiently computable.

Meanwhile, we choose to terminate the algorithm when the per-iteration improve-
ment on the potential function is smaller than a certain threshold to be specified soon
afterwards. Constant u, defining ¢ (-), and the trust-region radius 8; will also be defined
later.

In Algorithm 1, the per-iteration subproblem (9)—(10) can be chosen from the
first-order or the second-order mode depending on the target of the optimization,
that is, to achieve an e-perturbed first- or second-order stationary point, respectively.
Also, the second-order mode yields a perturbed first-order stationary point at a faster
complexity rate. In both modes, the resulting per-iteration problem (9)—(10) are easily
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Algorithm 1 Pseudo-code of the interior point trust-region (IPTR) algorithm

Step 1. Given ¢ € (0, 1], choose %0 € £2° to be an approximate analytic center of the feasible region. Let
t:=0.
Step 2. Solve the following problem

Vo) T X,d first-order IPTR )
Vo) Xyd + 3dTX; V2 f(x")X;d second-order IPTR

st AXpd = 0, ||| < Br; (10)

min

where X; = diag(x"). Denote by d’ the solution.
Step 3. Update x'T! := x! + X,d".
Step 4. Algorithm terminates if stopping criterion is satisfied. Otherwise, let r := ¢ + 1 and go to Step 2.

solvable. Specifically, in the case of first-order IPTR, Problem (9)—(10) admits a closed
form solution that does not involve any Hessian information, nor matrix inversion.
Namely, rewriting the problem in terms of an orthonormal basis of the kernel of A,
the subproblem can be written in the form: min, v,—r z, s.t. ||z]| < 1, with solution z =
— ﬁ Therefore, in this case the IPTR belongs to the class of first-order algorithms.
In contrast, in the second-order IPTR, the subproblem can be solved using a bisection
scheme as per [58,59] with a polynomial-time complexity.

Remark 1 For the second-order IPTR, the per iteration problem can be solved globally
within polynomial time despite its nonconvexity. The following condition is sufficient
and necessary for global minimality:

X, V2FDX + A Dd" — XATy + X, Vo(x') = 0;

X V2FONDX + M Dax, =0, A'=0, A8 — d'|) = 0; a
for Lagrange multipliers y* € R™ and A’ € R. See [34,54,55].

Despite this fact, we assume that the per-iteration problem is only solved approx-
imately such that an approximation to the necessary and sufficient global optimality
conditions of the trust-region subproblem can be achieved. Specifically, besides the
approximate feasibility of d'; that is, ||d’|| < B; + /¢; and AX,d' = 0, the following
system holds

X, VDX + A Dd" — X ATy + X, Vo(x') = I}

2 t t 2 t t gt 2. (12)
(XiVIfDXs + 2 Dax, = =€, A =0, [M(B —Ild" DI < &

for some Lagrange multipliers y* € R™, A’ € R and some I} € R" : ||I}]| < &.
Here, (X;V2f(x")X; + A'I)ax, > —& I means

dT (X, V2 DX, + M Dd > —&|d||>, Vd € {d : AX,d = 0}.

According to [59], a simple bisection algorithm can generate such a d’ with a total
running time complexity 0(n3(log(1/€t) + logn)).
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The computation of the analytic center of the feasible region, as the initial solution
to our algorithm, admits polynomial-time algorithms according to [59]. The choice of
the analytic center, same as in [59], is only for notational simplicity.

In scenarios where a wise choice of B, at each iteration is hard to obtain, one may
invoke Algorithm 2, which leads to very small incremental computational cost.

Algorithm 2 Pseudo-code of the adaptive search algorithm

Step 1. Given e € (0, 1] and x! € 2°. Lety =1, R:=1and n:=1
Step 2. Calculate 8 := B(y, 1§, R) via a formula to be articulated afterwards. Solve the following problem

. Vo (x! )TX rd first-order IPTR
min | VOO0 Xd (13)
Vo(x')' Xid + 5d " X; V- f(x")Xd second-order IPTR
st AXpd =0, ||d|| < B: (14)
where X; = diag(x"). Denote by d* the solution.
Step 3. Update x := x! + X;d". R
Step 4. Algorithm terminates if the required criterion is satisfied and outputs y; := y, n; := 17, B := B, and

R := R. Otherwise, let y =2y, 1 =27, and R :=2R, and go to Step 2.

In the following, we will show that both modes of the IPTR entail the best rate of
worst-case iteration complexity known for a stricter class of nonlinear optimization
problems. We will make use of the following lemma, which is well known in the
literature of interior-point algorithms (e.g., [43]):

Lemmal Letx > Oand ||d|| < B < 1. Then

'32

- Zln(xi +x;d;) + Zln(xi) <—eld+ 20 -8

i=1 i=l1

where e is an all-one vector.

3.1 Complexity analysis for the first-order IPTR algorithm

This subsection presents the complexity analysis for the first-order IPTR with a general
assumption that f is potentially not (directionally) differentiable. In the following, we
first present our assumptions in Sect. 3.1.1. Section 3.1.2 then presents the promised
complexity analyses.

3.1.1 Assumptions for the first-order IPTR

Our complexity analysis herein relies on the following set of assumptions.

Assumption 3 (a) Function f(x) is differentiable for all x € £2°. In addition,
there exist y > 1 and r € (0, 1) such that forall x € £2° andd € {d : ||d|| <
r, X(e+d) € 2},
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f(Xe+d) < @)+ (XVf(x).d) + %ndnz.

(b) The level sets of f are bounded, that is, given x0 € £2°, there exists R > 1 such
that sup{[|x|leo : f(x) < f(x°), x € £2°} < R. Note that this is the case when
£2 is bounded.

(c) The objective function is bounded from below in the feasible set, that is, there
exists L € R with f(x) > L forall x € £2°.

Remark 2 Assumption 3(a) subsumes the following special but important cases:

1. Forallx, x* € £2,itholdsthat f (x¥) < f(x)+(V f(x), )cﬁL—)c)—i—§||x+—x||2
for some B > 0. Such an inequality implies Assumption 3(a) with y := BR2.

2. Function f := f1 + f> is a composite function, with f; being continuously
differentiable and f>(x) := >}, xip forany p : 0 < p < 1. To see this, we
may observe that f, (X(d 4+ ¢)) = Z?:l xip(d,- + 1)? for any d = (d;) € R”
and any x = (x;) € £2. Also, f2(X(d + e)) is continuously differentiable in d
and the largest eigenvalue of its Hessian in d is upper bounded by %. It
is worth noticing that f; is not differentiable when x; = O for any i.

3.1.2 Complexity estimate for the first-order IPTR

We are now ready to present our complexity analysis. We elect to terminate Algorithm

2 . . .
1 whenever ¢ (x' 1) — ¢ (x?) > — m at iteration ¢ and output the solution x’. We
will consider an adaptive search scheme to ensure that, for some y; > 1, it holds

f(Xie+d)) < f) + (X, Vfx"),d") + %Hd’nz. (15)

Such y; exist under Assumption 3(a); for example, if we let y; = y for all ¢ then
(15) holds. In practice, we may search for y, through a simple scheme as in Algorithm
2, where, to calculate the size of the trust region, we let B(y, 7, R) := ()7 + 28)_1 e.
Algorithm 2 is terminated whenever f (X,(e + d’)) < f(x"H 4+ (X, Vfx",d) +
Lla'y2.

Remark 3 We notice that for any (7, B) : v ">y, B = ()7 + 25)_1 & < r the termi-
nation criteria in Algorithm 2 are satisfied. Therefore the iteration complexity required
in Algorithm 2 is only O (log, (max{y, (r~1 =2)e})). At termination of Algorithm 2,
it is evident that y; < 2 max{y, (r’l — 2)¢e}. Further noticing that y > 1,if e < r,
we then have that the complexity Algorithm 2 is reduced to O (log,(y)). Meanwhile,

1<y <2y. (16)
Theorem 2 Suppose that Assumption 3 holds. Denote by f* the global minimal value
of the objective function f on §2. Consider Algorithm 1 with first-order IPTR per-

iteration problem. Assume that y; is chosen such that (15) holds at each iteration
t. For any ¢ € (0, min{r, 1}], let pi; = ==&, B = (y; +2u) "', and t* :=
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0y_ £x _
’7[]”()( )=/ “i‘; 1)8](4y+48)—‘, the algorithm terminates before the t*-th iteration at a

2¢-KKT point, more precisely, at a feasible solution % that satisfies V f () +AT$ > 0
and ||diag(x) (Vf()?) + ATﬁ) lloo < 26 for some $. Otherwise, it holds that f (x'") —
f*<e.

Proof Step I In this step, we would like to show that x” € £2° forall # > 1. To this end,
we notice that, if x'~! € £2°,itholds that x! = x/ ' +x/~'a! ™! = x" (14471 > 0
foranyi = 1,...,n, where the last inequality is because ||d’~!|| < 8; < 1 imposed
as a constraint in (14). Also, if x’ =1 € £2°,itholds that Ax" = A(x'~! + X,_1d"~!) =
b+ AX,_1d"~! = b, where the last identity is based on constraint (14). Our proof for
Step 1 completes by noticing that x* e £2°.

Step 2 In this step, we would like to show that either of the following holds at
iteration k:

2

1y 1 &
P —ox) = St e

(17)

or | X;Vf(x")— e+ X, ATy ||oo < 2eand V f(x")+ATy" > 0 for some y' € R™.
To this end, we first notice that subproblem (13)—(14) can be solved globally in
closed form, whose first-order optimality condition yields that

X,V —pe+ X ATy +21d" =0, (18)
for some Lagrange multipliers y' € R™ and A’ € R. Combining (i) Eq. (15) and (ii)

x'eR°andd’ : |d'|| < B = (yi +21) "' < & < r from the result in Step 1, we
obtain that

f(Xi(e+d")) < fO&)+ (X, VD, d')+ %Ildtllz- (19)
Combined with Lemma 1 and the fact that 8; < 1/2, it implies that

+1y t 1 oo, Yy a2 T B
PO =9 = (VS (), Xid') 4 TP = e Td 4 pgttos (20
< (Vo). Xud') + D' |2 + B} @1)
Thus, as per (18),
P =9 = (=X, ATY —ad' d)+ D' + up?
= (=Ald', d') + %ncﬂn2 + up?. (22)

Case 1If ||d'|| < B, then A’ = Oand X,V f(x')+ X,ATy! = pe. Since j1 := & >
0, it therefore holds that V £ (x') + ATy’ > Oand that | X,V f (x") + X, ATy ||leo < €.
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Case 2 Consider the case where ||d’|| = ;. Let p(x, y) := XV f(x)—pue+XATy.
(Again, X := diag(x).) From (18), it therefore holds that || p(x’, y")|| = A"||d"| =
A!B;. Combined with (22), it yields that

p(x —p(x")

IA

Vi
(—Ald', d'y + El”dt 12+ up?

IA

Vi
—W B+ S I + up?

~BillpGet Ol + (B 4+ 1) B2

Case 2.1 Under Case 2, if || p(x’, y")|| > u, then

¢(xt+l)_¢(xt) < _’BIM_|_(%_|-M) ’3[2 (23)

Since u :=¢, B := (¢ + 21) " i, we have that

2 2
+ 2¢
Y o) < ——& +< € )'Vt
o ) o) = Ve + 2¢ Ve + 2¢ 2

82

< -
= 2y +4e

(24)

Case 2.2 Under Case 2, if || p(x’, y")|| < u, then
IX,Vf(x") —pe+ X ATy oo < IX V') — e+ X, ATy < . (25)

Therefore, X;Vf(x') + X,ATy! > 0 = Vfkx') + ATy’ > 0. Meanwhile,
1X:Vf(x") + X; ATy |loo < 2u = 2¢ for given y := &. Summarizing the above
cases, we know that Cases 1, 2.1, and 2.2 are mutually exclusive. Thus we have the
desired result in Step 2.

Step 3 We would like to summarize the above steps to obtain the claimed results
in this theorem. We first observe that, because the elected initial solution x° satisfies
that

— Z log(x]) > — Z log(x,o) — Co,
i=1 i=1

we have that, if (24) holds for all ¢ < ¢/, it holds that

/o2 1a2

+uCo < —

'y 0 o
FE) = f&) = 4y +4e 4y +4e

+ ¢Co. (26)

It therefore holds that f(x') — f* < [f(x*) — £*] - 4;/-‘?245 + &Co.
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Recall that the algorithm terminates whenever ¢ (x't1) — ¢ (x') > —2)/8% for

e -0 *
some ¢. Therefore, invoking (16), at iteration t* = (fCD-f +(C(2> 1)8)(4V+48) it holds
either that the algorithm has terminated before iteration ¢t* at a feasible solutlon X that
satisfies that V £ (£) + AT $ > 0 and ||diag(X)V f(X) + XAT $lleo < €. Otherwise, it

holds that f(x'") — f* <e. O

Remark 4 The first-order IPTR solves a constrained problem with potential non-
differentiability at an iteration complexity of O (1/&2). Furthermore, in view of Remark
3, the total adaptive search iterations till termination is O(1/&? - log,(y)). For this
types of problems, such a rate is the best known in the literature. It is also worth
emphasizing that the per-iteration problem admits a closed-form solution.

Remark 5 It is worth mentioning that some recent literature [25,35,47] studies first-
order algorithms under a more general assumption than Assumption 3(a), where the
Lipschitzian condition is replaced by a Holder-type one as below:

fXe+d) < fx)+(XVfx),d) + = ||d||‘+“ 27)

where « € (0, 1] is the Holder constant.

Our analyses herein cannot be directly extended to such a general case, because by
using the KKT conditions for the subproblem, a negative term proportional to ||d’ Ik
appears when substituting the term (X, V f(x'), d") in (27), which is not enough to
provide a decrease in the objective function in view of the heavier term proportional
to ||d’||'*%. This is a limitation of our current approach and the investigation of which
will be left for future research.

3.2 Complexity analysis for the second-order IPTR algorithm

This subsection presents the complexity analysis for the second-order IPTR with three
different sets of regularities on f: (i) f is potentially not twice differentiable; (ii) f
is potentially not differentiable; and (iii) f is a quadratic function. The resulting
complexity estimates as well as the characteristics of the final solution output from the
IPTR vary according to the changes of assumptions. In the following, we first present
our assumptions in Sect. 3.2.1. Section 3.2.2 then presents the promised complexity
analyses.

3.2.1 Assumptions for the second-order IPTR

The analysis on the second-order IPTR relies on the following assumptions.
Assumption 4 Function f(x) is twice differentiable for all x € £2°. For all x € £2°

andd,d €{d: ||d|| <r, X(e+d) € £2°}, for some fixed r < 1 and n > 1, it holds
that

IXV2f (X(e+d) — XV2f (X(e+d)) | <nlld—d'|; and
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f(X(e+d)— f(x) <(XVf(x),d)+ %dTXVZf (x) Xd + gndn? (28)

Assumption 5 Function f(x) is twice differentiable for all x € £2°. For all x € £2°
andd,d € {d: ||d|| <r, X(e+d) € £2°}, for some fixed r < 1 and n > 1, it holds
that

IXV2f (X(e+d) X —XV>f (X(e+d)X) |l <nlld—d'|l; and

1 n
f(Xet+d) = f() = (XVF(x), d) + 5d" XV2f () Xd + 2|, (29)

Remark 6 Assumptions 4 and 5 subsume some special but important cases:

1. Forall x, x™ € £2, it holds that f(x) is twice differentiable and

IV2£(x) — V2FD) < Alle —xT, (30)

for some 7 > 0. Such an inequality implies both Assumptions 4 and 5 with
1 := HR3. These are immediate from the observation that

IXV2f()X — XVEFGOX] < IXI1lx —x T < IXIPn0dll, 31
IXV2f(x) — XV2FaD < IXIAlx —xTI < IXI200dl,  (32)

as well as the direct implication of (30) in the form of
1
fX(e+d) — fx) = (XV[fx),d) + EdTXVZf (x) Xd + gIIXdII3
L - S
< (XVfx), d)+ Ed XV7f(x)Xd+ Tlldll .

2. Let function f := f} + f> be a composite function, with f; being twice con-
tinuously differentiable. If f>(x) := Y 7_, xip for some p : p > 0 then for any
d=(d;) e R":|d|| <r < 1, we immediately have

2
9° f2 (X(gi +e) _ p(p— Dx2d; + 1P
0x;
2
X - w =p(p— l)x{’_l(di + P2
0x;
2
(x1)* - W = p(p — Dx/(d; + DP 2.
Xj

Then, it is easily verifiable that:
- If p: 1 < p < 2, Assumption 4 holds, but f(x) is not twice differentiable
for x € {x; =0, for some i}.
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—If p: 0 < p < 1, Assumption 5 holds, but f(x) is not differentiable for
x € {x; =0, for some i}.

Remark 7 Assumptions 5 subsumes Assumption 4: It is evident that Assumption 4
implies Assumption 5, while the reverse does not hold telling from the second special
case in Remark 6.

3.2.2 Complexity estimates for the second-order IPTR

This section presents the complexity estimates for the second-order IPTR under three
different sets of assumptions. Theorem 3 first considers the case when f is potentially
not twice differentiable and shows that the desired e-perturbed first- and second-order
stationary point can be achieved with a rate of O (¢73/?) and O (e3), respectively.
Then, Theorem 4 generalizes to the case where f is potentially not (directionally)
differentiable and shows that the same set of efficiency rates can be achieved in gen-
erating a weaker version of the e-perturbed first- and second-order stationary point.
Such a version of approximate necessary conditions is also studied by Bian et al. [12].
Finally, Theorem 5 presents a special case where f is a quadratic function. In such a
case, the second-order IPTR is especially efficient and achieves the e-perturbed first-
and second-order stationary point both at rate of O (¢~!). Theorem 5 presents an alter-
native proof for the same result presented in [59]. We should note that the termination
criteria for the above three cases are slightly different.

For our first case, we will consider an adaptive search scheme at iteration ¢ to ensure
that, for some n, > 1 and R; > 1 and any x’ € 2° and (d’, B;) : |d'|| < B <
r, X.(e +d") € £2°, it holds that

IVf(Xi(e+d") =V &)= VFEOXd' | <niBl; Re = [xilloos (33)

1 U
f(Xie+d")) — fx) < (X, VF(x"), d')+ E(df)TX,vzf (x)) X,d' + é”d’ I13.
(34)
Recall that X; = diag(x"). Such R, and 7, exist under Assumption 4; for example,
we may let n;, = n, Ry = R := max{||x]c : f(x) < F(x%), x € £2°) for all 7, then

both (33) and (34) would hold. To see this, one may notice that, since x’, xitl e @°,
from mean value theorem, it holds that, for some 7 € [0, 1],

VT = Ve
— V2f(7:(xl+1 _ xl‘) +xf)(xl+1 _ xf) — sz(f(.xt+l _xt) +)Cl)Xtdt, (35)

and thus, at iteration ¢,

VA = VD = V2F D Xed'|
= (V2 /() = V2 F @ —x) +20) Xid'|
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= (V2 f (Xie) = V2F (Xi(xd' + o)) Xillld'|
< nrld'I* < nld'I* < np?, (36)

where the last line is due to Assumption 4, combined with ||d’|| < B; < r and
Xt, xt+l e °
In practice, we may search for R; and 5, through a simple scheme as in Algorithm 2.
Consider the algorithm under Assumptions 3 and 4. We elect to terminate the
second-order IPTR whenever the following criteria hold:

+/10g3

—55 all
1200m,2R>*

+/10¢g3

1200n,2R>*

P —p(x") > — d

¢(x[+2) _ ¢(xl+l) > —

At termination, the algorithm outputs solution x’*!. The termination criteria used in
Algorithm 2 is for (34) to be satisfied (where x'*! := x¥ and d’ = d%). To calculate

the size of the trust region, we also let B(y, 1, ﬁ) = 1of21€"
Ul

Remark 8 We notice that for any nAZn and R > R, the termination criteria in Algo-
rithm 2 are satisfied. Therefore the iteration complexity required in Algorithm 2 is
only O (log,(max{R, n})). At termination of Algorithm 2, it is evident that, for all 7,

1 < R; <2max{n, R}; 1=<n <2max{n, R}. 37

It is also easily verifiable that 8, = /107’+R2 <rife <1072
o

Theorem 3 Suppose that Assumptions 3(b) and (c) and 4 hold. Denote by f* the
global minimal value of the objective function f on S2. Consider Algorithm 1 with
second-order IPTR per-iteration problem. For any ¢ € (O, min {1Or2, %}], let u; =

e e e _ [e 2 )
SR B = 2 =+ 1007k, and €; < 1152%,]‘01’ any n; > 1 and Ry > 1 such that

(33)—(34) hold. For some universal constant C > 0, denote that

(38)

o | G (maxin, RDTZ[F() — f* + (Co = De]
N '

Then, the algorithm terminates before the t*-th iteration at a feasible solution X that
satisfies

£>0, VIO +ATy > —¢
Idiag(®)(Vf (&) +ATH)lloo <& (39)
da’ (diag()?)sz()?)diag()?) + ¢E1) d>0, Vd: Adiag(x)d = 0.
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Otherwise, it holds that f(x'") — f* < e.

Proof Step 1 Following Step 1 of the proof for Theorem 2, it is straightforward that
xt e 2°forallt > 1.

3
Step 2 We would like to show thatif ¢ (x' 1) —¢ (x?) > — —212;;7“’ then the following

hold: (i) V2 f(x")X,d" — ATy + Vf(x") > 0; (ii) 0 < x (Vf(x") + V2 f(x")d" —
ATyh); < 2w, Vi, for some y* € R™; and (iii) y > | X; V2 f(x)X,d" — X, ATy' +
XV (xhl.

To this end, combine (34) with both [|d || < 8, = u)"*n,~1/2/+/2 < r and Lemma
1. It therefore holds that

P —p(x")
<V () Xed' + %(df)Txlvzf(xnxtd’ + %ndf I — e X7 Xed" + 10087
= Vo) Xed' + 3@ XX, + L1+
< Vo) X,d' + %(d’)TX,sz(x’)X,dt n (%ﬁt + u,) B2. (40)

Then, an approximation to the necessary and sufficient global optimality conditions
of the trust-region subproblem, besides the feasibility of d’, are

X, VDX + A Dd" — X ATy + X, Vo(x') = I

2 t t 2 t tep _ qt s (41)
(XiVIfODXs + 2 Dax, = =€, A =0, [M(B —lld' D] < &;

for Lagrange multipliers y' € R™ and A’ € Rand I; € R" : |I'|| < €. Here,
(X, V2 f(x")X; + A1) ax, > —& 1 means

dT (X, V> X, + M Dd > —&|d||>, Vd € {d : AX,d = 0}.
If |d"]| = B, let vector
p(x', ¥ = X, V2 f(x)Xd' — X;ATY + X,V (x").
Then from (41), we have
Md' = —p@&', y') + 1. (42)
Thus,
Vo) X,d' + %(d’)TX,sz(x’)Xtd’

= %vmxffxtdf + %(d')T(X,ws(x’) + X,V f(x")X,d")
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= %(w»(x')TXt ~ X ATyHTd' + %(dfﬂxtvwf)
+ X, V2f(x")X,d — X,ATy)

1 1
= —§<d’>7(x,v2f<xf>xt +A'Dd +1,7d" + z(d’fpoc’, )

IA

1 R
E(dffp(xf, ¥ +& - (Id 1+ 11d" )

1 R 1
—M1ld' 12+ & - dld" 1> + a1 + §<d'>TF,,

1 R 3
—zx’nd’uz +é& - (nd’u2 + Eudfn) (43)

IA

where (43) is immediately due to (42).
As an immediate result, combined with (40), it holds that

1 ~ 3
P — ) = — M 1P + (%ﬂ, + M,) BE+é - (ud’u2 - End’u)

1 Mo _ . 3
= =3 A1+ (0 N ) s 1/2+€t'<||dt||2+5||dt||>~

It therefore yields that

3
1 V 2me14 w? 3

t+1y _ t<__)\ldt2 t s dzz Zidt )
P — o) = = Salld” + 20 G +é& (II I+ 5 17l

&

Recall that n: = 1, Mt m and ¢ < b < < — Uy = §t —

3 2 3 3 3
20 1y 4 K 5\/27%#;. If ¢(xt+l) _ (]5()([) > _Vzﬂtﬂr then _\/42877:% <

127, 2 — 24n,
. o 11a/20 1}
=M P A+ (BB + ) B2+ & - (Il 1P + 3 1d ) = 32 Nld" 1P < =g +
& - (Ild"]I1> + %Hd’ ). We might consider the following two cases.

Case 11f ||d'|| < B; — /&, it then holds that A! < /¢, from the last inequality in
(41). As aresult, condition (41) further yields that

X,V f(x)X,d" — X, ATy + X, Vo (x| = Ip&x’, y)I|
= | = Md" + LIl < Véld' | +é&.

Thus, combined with ||d'|| < B; — v/& it holds that
I1X, V2 f(x)Xd" — X, ATy + X, VF() = peell < Vélld' | + & < & + Biv/é,
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Since ﬂt\/g + & < 14, therefore,
X V2 F D Xod — X,ATY + X,V FD < &+ Biv/é + e < 20,
and, it holds that
IX: V2D Xed' — XATY + X,V F( — el <

which further leads to

VI Xd — ATy + V') > 0. (44)
Case 2 If |d'|| € [B; — v/é, B + /&), then [[p(x', y)|| = || — A'd" + I1|| <

M|+ (LI X V2 (D Xd" — X ATY + X, V(e = I pi’, y)Il < & <
W, then following the same argument as in Case 1, it is evident that the desired
inequalities for Step 2 can be obtained. We will therefore consider the scenario where
—& + || p(x", ¥y || > 0 in the subsequent. Notice that

~ 12 3 t 11 t t
& ('l + Sl V Aud I

1 1 1
> ||d"| - (—Ennn + Eup(x’, yf)u) > (B — Ve (—Eét + 5P, yf)u)
_ <V2nt,ut _\/_g)(
- 2

4n,

—& + Ip&" 00,

A< L

Since fy < ;== 1-p 2 1- 7= —Vé < d'll < B+ Ve <
1 = ||d"||® < ||d"||. Combined w1thf< v "”” , We may continue as

1/2 11./2 3
5( 1 —\ . N 2320 .
( ! +J2>et+ L (=& 4+ 1IpG 1) @5)

>
2 «/277[ 487]; 967’];
thus
2407);
VE e+ 2 g s pet ) (46)
N (J_znt ) ’ ’
148€; 22[,14 rot
. 47
ra el LG ] (47)

Since &; < ﬁm, the above immediately leads to || p(x’, y')|| < p,, that is,

e > 1 X V2D Xd — X, ATy + X, Vo (x|
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= (X, V2 f N Xed" = XATY' + X,V f(x) — ell,
which further implies
V2F(HXd — ATy + V') >0,
and
0 <x/(Vf(x") + VEf(xHXd' — ATy < 2w, Vi

Combining Cases 1 and 2, we have the desired result in Step 2.
Step 3 We would like to show that once it holds that

V2 Xd — ATy +VF(x") > 0;
and 0 <x{(Vf(x") + V2 f(:")X,d' — ATy <2, Vi (48)

then, it simultaneously holds that, for some y € R™:

~ 1223
Vf(xt'H) — ATy > ——
(49)
TV T = AT < 2 + iRy, Vi
According to our assumption of (33),
IVFG& ) = VR = V2D Xd' || < 0Bl (50)

Then

Vf(xt+1) _ ATyt
> V2FHXd — ATy + VD) — IV = VD = V2D Xd oo
Mt

Z—Uzﬁzzz_ )

Meanwhile, combining (48) with the above, it obtains that

TV T — ATy
<|(1+dHx (V") + VEF(x)Xd — ATy
L +dH X VEET) = X, VD — X V() Xd oo

e Ry
2

< (1+/31)(2Mz+71th),3;2 <{+8) <M1+ ) <2us 4+ weR;.

The last line is due to ,3,2 <1/2and|l +dl.t| <(1+p8) <2

3
Step 4 We would like to show that, if ¢(x't2) — p(x'T!) > ——‘jézt’”, then

(X,_Hsz(xH‘l)X,_H + (V3urm+ 1) ax,,, > 0. To this end, we invoke (42)
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(where we let ¢t :=t + 1) and (41) (where we let ¢ := ¢t + 1). The combination of the
three results in

t+1 | r+1 T
<Xt+lv2f(xt+l)Xt+l + <||p(x » Y )” + ” l-‘rl”)l) - _é[l (51)
:31+1 AXii1
/2 3
Further observe that from Step 2, it holds that, if ¢ (x'T2) — ¢ (x'T!) > —:é;—:fl’“,

41 i+l 2 . .
then 12& ,>ﬂr+:|\+llﬂ+1ll < ”’*é:f’“ < /3iti+10:+1. Combined with (51), we have
the claimed result in this step.

Step 5 This step summarizes the above steps and prove the claimed results of the
theorem.

We recall here x¥ is the approximate analytic center that satisfies

—Y log(xh) = = Y log(x) — Co. (52)

i=1 i=1

where Cy is a constant.
We know that at iteration ¢* that satisfies (38) for certain constant C, if the termi-
nation criteria of simultaneously satisfying

V20 V1063

P —p(x") > — =— :
481, 1200n,2R>*
V10g3
PG — Pt > -
12007,2R,

have never been met, then, together with (37), we obtain a reduction in the potential
function:

% V83t*
"y 0 _
PO =) = T (53)
Thus
* " * " \/Ssl*
F&) = ;:1 log(x; ) — f(x7) + 1 ;:1 log(x;) = 1294 max(y. R
(54)

Then combined with (52) and the fact that ,« < ¢, it holds that

Nedr*

0 *
" 04(max(y, Ry TS~ Aot

FO) = f* <
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Thus,
(38) = f(x') — f* <e.

forany C > 4294 in (38). Otherwise, invoking Steps 2 and 3, the algorithm terminates
before +* and achieves a solution x’*! at iteration # that satisfies

Vf(xl+l) _AT)A} > _& > —€&,
2 (55)
TV = AT < 2+ R <6, Vi

Furthermore, from Step 4, the satisfaction of the termination criteria also implies

(X,+1V2f(x'+1)Xl+1 + (\/ e + é) 1) >0

AXry1

/3
— (vazf(xf“)xm + ( s+ et> 1) >0,

AXit1

= (X V2P X+ Vel) =0,

Xi41
thus immediately leads to the desired result. O

Consider the same algorithm procedure as in the second-order IPTR. If the regular-
ity on f is relaxed from Assumptions 4 to 5, then we may still obtain an approximate
KKT condition. Nonetheless, such an approximation is in a critically weaker form.
Specifically, we have the following theorem. In this case, we have a slightly differ-
ent termination criterion: we elect to terminate the second-order IPTR whenever the
following criteria hold:

+/10g3
an
12007’];2

+/10g3
1 2007][2 ’

PG —p(x") > —

¢(xl+2) _¢(xl+1) > —

Once the algorithm terminates, it outputs x’*2 as our final solution.

For this case, we will consider an adaptive search scheme to ensure that, for some
n;>1and R, > 1 and any x’ € 2% and (d’, B;) : ||d"|| < B; <1, X;(e+d") € 2°
it holds that

X,V f(X:(e+ dl)) - XtVf(x’) - XtVZf(XZ)Xtdt” =< Ut.Btz

f(Xele+d)) — fx) < (X, VF(x), d') + %(d’)TXzVZf (xr) X,d" + %nd’u?
(56)

Such R; and n; exist under Assumption 5; for example, we may chose n; = 7,
R; = R = max{||x|lcc : f(x) < f(xo),x € £2°} for all . In such a case, the
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second line is immediately from Assumption 5. Meanwhile, the first line also holds.
This is because, from x’, x'*! € £2° and mean value theorem, it holds that, for some
T [0, 1],
Vf(xl-l—l) _ Vf(xt) — sz(t(xt_H _ xl) +x1)(xl+l _ xl)
— sz(‘[(.xt+1 _ xl) + xl‘)del"

and thus
IXVFGHD = XV = X V2D Xd'|
= 1%, (V2 () = VT =) 4 x)) X,
= 1% (V2f (Xie) = V2 £ (X, (zd' +e))) X, ']

< nelld'|? < nlld'|* < g, (57)
where the last line is due to Assumption 5.
In practice, we may also search for R, and 7, through Algorithm 2. To calculate

the size of the trust region, we also let B(y, 1, R) := /1;?.

Remark 9 We notice that for any 1 >7 the termination criteria in Algorithm 2 are sat-
isfied. Therefore the iteration complexity required in Algorithm 2 is only O (log,(n)).
At termination of Algorithm 2, it is evident that, for all 7,

1 <n <2n. (58)

It is also easily verifiable that 8, = /#ﬂz <rife <1072
t

Theorem 4 Suppose that Assumptions 3(b) and (c) and 5 hold. Denote by f* the
global minimal value of the objective function f on 2. Consider Algorithm I with
second-order IPTR per-iteration problem. For any ¢ € (O, min {10r2, %}], let pu; :=

e g [ _ [ P TR
S B = TR T and €, < TT527, with n; > 1 such that (56) holds. For
some universal constant C > 0, denote that

2 0y _ fx* _
. Fn [0 — f* + o 1>e]1 59)

Vel

Then, the algorithm terminates before the t*-th iteration at a feasible solution X that
satisfies that

>0, |diag® VIR +ATH)loo <e,

60
a7 (diag(f)vzf()e)diag()e) n JEI) d>0, Vd: Adiag(®)d =0, ©0)

Otherwise, it holds that f(x'") — f* < e.
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Proof Step 1 Following Step 1 of the proof for Theorem 2, it is straightforward that
x' e 2°forallt > 1.

Step 2 We would like to show that if ¢(x'*) — ¢(x') > —Y2H then (i)
V2 Xed — ATy + V(x> 0; (i) 0 < x[(Vf(x") + V2 f(x)d' — ATy <
21, Vi, forsome y' € R™;and (iii) u; > || X, V2 f(x)X,d' — X, ATy + X, Vo (x)].

To this end, combine (56) with both ||’ || < ; = pu/*n,~"/2//2 < r and Lemma
1. It therefore holds that

P —p(x")
<VfxHTXd" + %(d’)TX,V2f(x’)Xtd’ + %Hd’ I3 — e " X7 X d" + s B2
= V(') X,d' + %(d')Tx,vzﬂxf)X,df + %ndfn-* + wB;
<Vo(x"HTX,d' + %(d’)TXtVQf(x')X,dt + (%ﬂt + Mz) BE. (61)

Then, an approximation to the necessary and sufficient global optimality conditions
of the trust-region subproblem, besides the feasibility of d’, are

X, VDX + A Dd" — X ATy + X, V(') = I

2 t t 2 t ten _ qt s (62)
XiVIfODXs + 2 Dax, = =€, A =0, [M(B —Ild' DI < é&;

for Lagrange multipliers y' € R™ and A’ € Rand I; € R" : |I'|| < &. Here,
(X, V2 f(x")X; 4+ A1) ax, = —& 1 means

dT (X, V2 DX, + M Dd > —&|d||>, Vd € {d : AX,d = 0}.
If ||d'|| = B, let vector
p(x' ) = X, V2 () Xd — X,ATY + X, Ve (x').
Then from (62), we have
Md' = —p@!', y) + 1. (63)
Thus,
Vo) X,d' + %(dt)TX,sz(xt)Xtd’
= %Vq&(x’)TX,d’ + %(d’)T(X,qu(x’) + X, V2 f(x")X,d")
=%Nmﬂf&—XAiwﬂf+gwfaNmﬂ)
+ X, V2 f(x)X,d' — X;ATy)
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1 1
= —§<d’)T<va2f<xf)x, + A Dd" 4+ 1,d + E(dffpu’, )

IA

1 o
E(d’)Tp(x’, Y +& - ld' 1+ 1d'

1 R 1
= —Ex’ndfnz +& - (d" 1>+ 1d' | + 5(d’>TF,,

IA

1 R 3
—zk’lld’IIZ S (nd’n2 + Eud’n) (64)

where (64) is immediately due to (63).
As an immediate result, combined with (61), it holds that

1 n . 3
O =9 = =S + (S + ) B+ (nd’n2 - End’n)
Loiin2 N 12 —172 -1 ~ t2 L gt
= =M1+ (S P02V e wen T 2+ & (1P S ).

It therefore yields that

P —p(x") < - + L

12, 2n;

3
1 V2mwy 2 R 3
zxfudfnz + Ll +é- (nd’n2 + End’n).

Recall that n, > 1, u, :=%ande§%§5" u,<":>

\/2'71/%3 + M_12 < 5\/2'71l/-¢ If ¢(xz+1) ¢(xt) - Vzntﬂz then \/2771Mt

121, 2, T2

. N 11«/2 I
— LA P+ (2B ) B+ & (1P + 31l ) = j)»t“dt”z < # +

& - (Id"I*> + 3la"|l). We might consider the following two cases.
Case 11If ||d"|| < B; — /&, it then holds that A’ < \/5 from the last inequality in
(62). As aresult, condition (62) further yields that

1X, V2 F () Xed" = XATY + X, Vo (D = || = 2'd + T < Ve d' || + &
(X, V2 F ()X ax, = —(Vé + el
(65)

Thus, combined with ||d'|| < B, — \/g it holds that
IX, V2 F () Xpd' — XATY + X, V) — el < Ve ld' || +& < & + Bi/ér,
Since Biv/é + & < i, it holds that

1X, V2 F ) Xed' — X ATy + X,V £ oo < & + Biv/ér +
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and that | X; V> f(x") X,d' — X,ATy' + X,V f(x") — use| < s, which further leads
to

V2 Xd' — ATy + VF(x") > 0. (66)
Case 2 If |d'|| € [ — v/é, B + V&), then [[p(x', y)|| = || — A'd" + I7|| <

AN ||+ I3 IE || p(x”, y)|| < &, then following the same argument as in Case 1,
it is evident that the desired inequalities for Step 2 can be obtained. We will therefore
consider the scenario where —¢; + || p(x’, ¥")|| > 0 in the subsequent. Thus

3 11,/2n
e ndtn? = Zndt )Lt 42
& (u [ ||) 48, Id" |
; 1 1 P = 1, 1 ot
> ' ( =10+ S 1P Gt ) > (B — Vé) —5é&+ 31yl
><V2ntﬂt_\/_g>(
- 2

2 tot
I, &+ Ipx', 0,

o 1
: €= 1480 = =
Since f; < 5oz = 1= f = 1 - 512 B —Vé < lld'll < B+ Vé <
1 = ||d'|? < ||d"|| and /& < Vfg,’]f",we may continue as

1/2 11,/2n,u3
5( —\ . Nt g 23./2n: 0 .
( d +\/5>ef+ > (=& IpGt D) (67)

2 /20 48n; 961,
thus
2407’)1
+Ve e + e > lpet, vl (68)
232 e (V ) t l
148¢; 224 tot
S R WL (69)

Since & < mm, the above immediately leads to || p(x’, y')|| < i, that is,

e > 11X V2D Xd — XAy + X, Vo (x|
= (X, V2 f(x)X,d" — X, ATY + X,V f(x) — well,

which implies
V2O Xd — ATy + V') >0,
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and
0 <x[(VF(x") + VEf(x"d — ATy < 2w, Vi.

Combining Cases 1 and 2, we have the desired result in Step 2.
Step 3 We would like to show that once it holds that

ViF(hHXd — ATy + Vfx") > 0;
and 0 <x/(Vf(x")+V2fx)X,d — ATy <2u,, Vi (70)

then it simultaneously holds that, for some 3 € R™:
VLG = AT < S, Vi (71)
According to our assumption in (56),
IX,VFGETH = X, VEGD = X V2 FGDXd' | < 0B (72)
Meanwhile, combining (70) with the above, it obtains that

TV T — ATy,
< (1L +dHxl (VD) + V2D Xd — ATy
41X V) = X, VD = X, V() X |oo
= U+ A@u+n)p? < (1+B) (e + ) = 3u

The last line is due to ﬂtz <1/2and]|l +dl.t| <({+8) =<2

3
Step 4 We would like to show that, if ¢(x'T?) — p(x'T!) > ——ng"n’j‘f , then

X1 V2 X 14+ Biini41 D ax,,, > 0. To this end, we invoke (63) (where
we lett := t + 1) and (62) (where we let t := t 4+ 1). The combination of the three
results in

<IIP(X’+1, YOI+ 10l |,

(X,+1V2f(x’+1)Xt+1 + + et) 1) =0. (73)
Br+1 AX;i1

201
Further observe that from Step 2, it holds that, if ¢ (x'T2) — ¢ (x'T!) > —18;—:“,

t+1 41 : . .
then 12& ’}ﬂH?”le’“ I < “’J’é:f’“ < /3iti+11:+1. Combined with (73), we have
the claimed result in this step.

Step 5 This step summarizes the above steps and prove the claimed results of the

theorem.
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We recall here x? is the approximate analytic center that satisfies

=Y log(xh) = = > log(x) — Co. (74)

i=1 i=1

where Cy is a constant.
We know that at iteration ¢* that satisfies (59) for some universal constant C, if the
termination criteria of simultaneously satisfying

V20t V10e3

41y _ t _ _
PG — oG > o T200n 7"

+/10g3
1 2007];2 ’

¢(xl+2) _¢(xt+1) > —

have never been satisfied, then combined with (58), we obtain a reduction in the
potential function:

* V83t*
N 0 _
P =90 =~ (75)
Thus
* " * " vV 3p%
PG = e Y _log(xf) = F0) + e Y Jlog(x) < — 62022. (76)

i=1 i=1
Then combined with (74) and the fact that u,« < ¢, it holds that

e3t*
160012

FO&) = f* = wCo < + f(x% = f* +6Co

Therefore,
(539) = f(x') — f* <e.

for all C > 1600 in (59). Otherwise, since j; := 5% the algorithm terminates before

#* and achieves a solution x’*! at iteration 7 that satisfies
1 A .
VLT = AT < 3w < e, Vi, (77)

according to Step 2. Furthermore, from Step 4, the satisfaction of the termination
criteria also implies

(Xen V2D Xewr + (V3pm +&) 1) =0

AXry1
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3
== (Xz+1V2f(xt+l)Xz+1 + ( 3¢ + 6z> I) >0,
AXit1
=

07

= (X V2 )Xo + Vel )
AXry1

thus immediately leads to the desired result. O

Remark 10 We observe that even though (60) is a weaker condition than the desired
one in this paper, it still applies to application problems such as the non-Lipschitz
problem formulation of sparse optimization discussed by Bian et al. [12], who provide
a different algorithm with the same complexity for a special case that satisfies all our
assumptions.

Let us now consider a special case where substantially faster iteration complexity
can be achieved, namely, let us consider the following:

Assumption 6 f is a quadratic function, that is, n = 0.

Such a result is, in fact, first presented by Ye [59] for achieving an approximate
first-order KKT point for linearly constrained nonconvex quadratic program. The
complexity in the approximation to the second-order necessary condition has not been
explicitly stated, though a closer look at the results therein may find it an immediate
result from the paper. In the following, we provide an alternative proof for the com-
plexity analysis, which results in some new insights in solving this type of problem.
We elect to terminate the second-order IPTR whenever the following criteria hold:

P —p(x") > —3;—0 and

¢(xl+2) _¢(xl+1) > _3870

2

Once the algorithm terminates, it outputs x’ ™2 as our final solution.

Theorem 5 Suppose that Assumptions 3(b), (¢) and 6 hold. Denote by f* the global

minimal value of the objective function [ on §2. Consider Algorithm 1 with second-

order IPTR per-iteration problem. For any ¢ € (O, min {10n2r2, %}], let py = =
0 *

LB =B i=1/8 & < fouforallt, and r* = [2UCO=T +(C°‘1>ﬂ, the

algorithm terminates before the t*-th iteration at an e-KKT2 point, more precisely, at

a feasible solution X that satisfies that

£>0, VIR —AT9>0; |diag@ (VR +ATH e <&,

78
dT (diag(i)vzf()?)diag(f) T 81) d>0, Vd: Adiag(®)d = 0. 7%

Otherwise, it holds that f(x'") — f* < e.
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Proof Step 1 Following Step 1 of the proof for Theorem 2, it is straightforward that
x' e 2°forallt > 1.

Step 2 We would like to show that if ¢(x't!) — p(x") > — 45 then (i)
VT = ATy > 05 (i) 0 < x[(Vf(') + V2 f(xd' — ATy < 2, Vi
and (iii) [| X, V2 £ ()X, d' — X, ATy + X, Vo) < pu.

Following Step 2 of the proof for Theorem 3, while noticing that n = 0, we can
show that it is also evident that

1
¢(xl+l) _¢(xl) < _EAtHdIHZ +Mﬁ2 +€t . (”d’“ + — ||dt||> (79)

Case 1 If ||d"|| < B — \/5, it then holds that A’ < \/Z As aresult, condition (41)
yields that

X, V2 Xd — X,ATY + X, Vo(x') =T — Md'; (80)
Thus, it holds that
1X, V2 F(DXd — XATY + X, VD < u+é +Vep < 2u, (81)
and

1X, V2 f (e Xd" — XATY + X, V(") — ]
= | = Md'| <& +Vép < u
= | X, V2 Xd — X, ATy + X, VF(x") — ulloo <
= V2 (X, d — ATy +Vf(x') > 0. (82)

Case 2If |d'|| € [B — \/6T B+ \/E], then from (80), it holds that || p(x?, y')| <
MBHI|I || < MB+é.1f e > p(x’, y")||, following the same argument as above, it
is then evident that the desired results of Step 2 hold. In the subsequent, we focus on
the scenario where & < || p(x’, y")|.. In view of up? = &. it holds from d(x'Th —
¢(x") > —45 that

R 3 31 1
é - (nd’n2 + §||d’||) +o > Eﬂnd‘nz

t 1 1 t t
> |ld'| - (—§||n|| + 5Py )||>
1 1
> (B —Vé) (——@, + 5l y’)||)
><1/8—f>( e,+—||p(x y>||> (83)
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. € =150 = = x
Since gy =5~ =7 B — /& < |d'| < B+ V& < 1 = ||d"||* < ||d'| and
€& < min{zglm, ﬁ/x}, we may continue as

LTV L Y S L
— - JE—— > J— —_— —— § — p—
148 2 64 2960 2 1aght TP
which immediately leads to || p(x’, y")|| < u, that is,

w1 X, V2 Xd — X, ATy + X, Vo (x|
> (X, V2 f () Xd' — XATY + X, V(X)) — pelloo,

which implies
V2D Xd — ATy + V' >0,
and
0 <X/ (V) +V2f(xHd — ATy <2p, Vi,

Combining Cases 1 and 2, we have the desired result in Step 2.
Step 3 We would like to show that once it holds that

V2 Xd — ATy +VF(x") > 0;

. . (84)
and 0 < xl-’(Vf(x’) +VEF(xDHd — ATy <2u, Vi,
then for some y € R"™:
Vix'TH —ATH >0,
R . (89)
e, (V) — A y)il <, Vi
To that end, notice that, due to Assumption 6,
ViETH =V =ViFahX.d'. (86)

Combining (84) with (86), we have that
Vi) —ATY =V2rahX,d — ATy + Vi) > 0.
Meanwhile, combining (84) with (86), it obtains that

TV T — ATy,
< |1 +dHx!(Vfx") + V2 fx)d — ATy
<2u(l+B)B* < .
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The last line is due to |1 +dl.t| <(1+4+p8) <2

Step 4 We would like to show that, if ¢ (x'™2) — p(x't!) > —4 = —35;, then
(X1 V2 (™)X, 11 + 4ul) ax,,, > 0. To this end, we can follow the proof for
Theorem 3 to verify that both (41) and (42) hold under the assumption of Theorem 5.
Thus, we may invoke (41) and (42) (where we let ¢ := t 4 1). Combined with (80)
(where we let t :=t + 1), those two relationships yield the following

t+1 t+1 r
B AXpy

Further observe that from Step 2, it holds that, if ¢ (x'*?) — ¢(x'*T!) > —Z4 then

32
t+1 \,t+1 2 . . . .
Iper™ VDI < #4€ < 9,y Combined with (87), we have the claimed result in

B
this step. The rest of the proof is straightforward following Step 5 of the proof for
3200/ )= f*+(Co—D)e] ] . O

Theorem 3, while we let 1 := % and t* = { -

Remark 11 'We notice the substantial improvement in the iteration complexity: If
f is quadratic, the complexity in achieving an e-perturbed first-order and second-
order stationary point is both O(e~!), while for the same algorithm to solve a
more general problem, our complexity estimates are O(¢~3/?) and O(¢>) for the
first-order and second-order stationary points, respectively. Despite that the per-
iteration trust-region subproblem cannot be solved accurately, it incurs total running
time complexity of O (n?(log(1/€) + logn)) in view of Remark 1. Since € is only
required to depend polynomially in ¢, the per-iteration problem only incurs a com-
plexity of 0(n3(10g(1/£) + logn)). Furthermore, in view of Remarks 8 and 9, the
total adaptive search iterations till termination are 032 . log, (max{R, n})) and
O3 - log, (max{R, n})) for first-order and second-order points, respectively. The
cause of this gap, to our understanding, is whether the cubic error term is present in
the Taylor expansion-like inequalities (28) and (29), or namely, whether = 0 holds.
Note that when the p-th order derivative is used to find a first-order stationary point
with a more general set of convex constraints, the best known iteration complexity is
0(e~P+1/P) [13,23] (but with a costly per-iteration complexity). The quadratic case
here discussed is compatible with this result as a limiting case p — +00.

Remark 12 In all three cases of discussion above, the per-iteration problem of the
second-order IPTR admits a bisection scheme as per [58,59] with a “log-log”
(quadratic) rate of complexity.

4 Conclusion

In this paper we consider the minimization of a continuous function that is potentially
not differentiable or not twice-differentiable on the boundary of the feasible region.
To characterize computable stationary points, we present suitable first- and second-
order optimality conditions for this problem that generalizes to classical ones when
the derivative on the boundary is available, through the use of an interior point tech-
nique. As a result, such an optimality condition is stronger than the existing conditions
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commonly used in the literature. We further develop new interior point trust-region
algorithms and present their worst-case complexity estimates to solve the special but
important case with linear constraints. Even with a weaker regularity on the objective
function, the presented algorithms are theoretically guaranteed to yield a stronger opti-
mality condition at the same best known complexity rates in the literature for first- and
second-order stationarity using first- and second-order derivatives. We believe that this
approach can be generalized for non-linear constraints and for infeasible initialization.
Also, solving a higher-order subproblem, we believe this approach can yield iteration
complexity results for finding ¢-th order stationary points, extending the results from
[22].
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