Filtros : "PROGRAMAÇÃO MATEMÁTICA" "Haeser, Gabriel" Removido: "Financiado pela FAPESP" Limpar

Filtros



Refine with date range


  • Source: Optimization. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    Disponível em 2026-08-19Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARMIJO, Nicolas Esteban Fuentealba e BELLO-CRUZ, Yunier e HAESER, Gabriel. A semi-smooth Newton method for general projection equations applied to the nearest correlation matrix problem. Optimization, 2025Tradução . . Disponível em: https://doi.org/10.1080/02331934.2025.2547716. Acesso em: 19 nov. 2025.
    • APA

      Armijo, N. E. F., Bello-Cruz, Y., & Haeser, G. (2025). A semi-smooth Newton method for general projection equations applied to the nearest correlation matrix problem. Optimization. doi:10.1080/02331934.2025.2547716
    • NLM

      Armijo NEF, Bello-Cruz Y, Haeser G. A semi-smooth Newton method for general projection equations applied to the nearest correlation matrix problem [Internet]. Optimization. 2025 ;[citado 2025 nov. 19 ] Available from: https://doi.org/10.1080/02331934.2025.2547716
    • Vancouver

      Armijo NEF, Bello-Cruz Y, Haeser G. A semi-smooth Newton method for general projection equations applied to the nearest correlation matrix problem [Internet]. Optimization. 2025 ;[citado 2025 nov. 19 ] Available from: https://doi.org/10.1080/02331934.2025.2547716
  • Source: SIAM Journal on Optimization. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, TEORIA DOS JOGOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, Luis Felipe Cesar da Rocha e HAESER, Gabriel e KOLOSSOSKI, Oliver. A Jacobi-type Newton method for Nash equilibrium problems with descent guarantees. SIAM Journal on Optimization, v. 35, n. 3, p. 1761-1791, 2025Tradução . . Disponível em: https://doi.org/10.1137/23M1575639. Acesso em: 19 nov. 2025.
    • APA

      Bueno, L. F. C. da R., Haeser, G., & Kolossoski, O. (2025). A Jacobi-type Newton method for Nash equilibrium problems with descent guarantees. SIAM Journal on Optimization, 35( 3), 1761-1791. doi:10.1137/23M1575639
    • NLM

      Bueno LFC da R, Haeser G, Kolossoski O. A Jacobi-type Newton method for Nash equilibrium problems with descent guarantees [Internet]. SIAM Journal on Optimization. 2025 ; 35( 3): 1761-1791.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1137/23M1575639
    • Vancouver

      Bueno LFC da R, Haeser G, Kolossoski O. A Jacobi-type Newton method for Nash equilibrium problems with descent guarantees [Internet]. SIAM Journal on Optimization. 2025 ; 35( 3): 1761-1791.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1137/23M1575639
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR, ANÁLISE NUMÉRICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Global convergence of a second-order augmented lagrangian method under an error bound condition. Journal of Optimization Theory and Applications, v. 206, n. artigo 54, p. 1-30, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10957-025-02731-3. Acesso em: 19 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Prado, R. W., Schuverdt, M. L., & Secchin, L. D. (2025). Global convergence of a second-order augmented lagrangian method under an error bound condition. Journal of Optimization Theory and Applications, 206( artigo 54), 1-30. doi:10.1007/s10957-025-02731-3
    • NLM

      Andreani R, Haeser G, Prado RW, Schuverdt ML, Secchin LD. Global convergence of a second-order augmented lagrangian method under an error bound condition [Internet]. Journal of Optimization Theory and Applications. 2025 ; 206( artigo 54): 1-30.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10957-025-02731-3
    • Vancouver

      Andreani R, Haeser G, Prado RW, Schuverdt ML, Secchin LD. Global convergence of a second-order augmented lagrangian method under an error bound condition [Internet]. Journal of Optimization Theory and Applications. 2025 ; 206( artigo 54): 1-30.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10957-025-02731-3
  • Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARMIJO, Nicolas F. A semi-smooth Newton method for conic projection equations. 2024. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2024. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-06012025-190713/. Acesso em: 19 nov. 2025.
    • APA

      Armijo, N. F. (2024). A semi-smooth Newton method for conic projection equations (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45132/tde-06012025-190713/
    • NLM

      Armijo NF. A semi-smooth Newton method for conic projection equations [Internet]. 2024 ;[citado 2025 nov. 19 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-06012025-190713/
    • Vancouver

      Armijo NF. A semi-smooth Newton method for conic projection equations [Internet]. 2024 ;[citado 2025 nov. 19 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-06012025-190713/
  • Source: Notebook of abstracts. Conference titles: Brazilian Workshop on Continuous Optimization - BrazOpt. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, TEORIA DOS JOGOS

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, Luís Felipe e HAESER, Gabriel e KOLOSSOSKI, Oliver. A Jacobi-type Newton method for Nash equilibrium problems with descent guarantees. 2024, Anais.. Rio de Janeiro: FGV/EMAp, 2024. Disponível em: https://eventos.fgv.br/sites/eventos.fgv.br/files/arquivos/u1314/abst_notebook_vf2.pdf. Acesso em: 19 nov. 2025.
    • APA

      Bueno, L. F., Haeser, G., & Kolossoski, O. (2024). A Jacobi-type Newton method for Nash equilibrium problems with descent guarantees. In Notebook of abstracts. Rio de Janeiro: FGV/EMAp. Recuperado de https://eventos.fgv.br/sites/eventos.fgv.br/files/arquivos/u1314/abst_notebook_vf2.pdf
    • NLM

      Bueno LF, Haeser G, Kolossoski O. A Jacobi-type Newton method for Nash equilibrium problems with descent guarantees [Internet]. Notebook of abstracts. 2024 ;[citado 2025 nov. 19 ] Available from: https://eventos.fgv.br/sites/eventos.fgv.br/files/arquivos/u1314/abst_notebook_vf2.pdf
    • Vancouver

      Bueno LF, Haeser G, Kolossoski O. A Jacobi-type Newton method for Nash equilibrium problems with descent guarantees [Internet]. Notebook of abstracts. 2024 ;[citado 2025 nov. 19 ] Available from: https://eventos.fgv.br/sites/eventos.fgv.br/files/arquivos/u1314/abst_notebook_vf2.pdf
  • Source: Set-Valued and Variational Analysis. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUKUDA, Ellen Hidemi e HAESER, Gabriel e MITO, Leonardo. On the weak second-order optimality condition for nonlinear semidefinite and second-order cone programming. Set-Valued and Variational Analysis, v. 31, n. artigo 15, p. 1-28, 2023Tradução . . Disponível em: https://doi.org/10.1007/s11228-023-00676-1. Acesso em: 19 nov. 2025.
    • APA

      Fukuda, E. H., Haeser, G., & Mito, L. (2023). On the weak second-order optimality condition for nonlinear semidefinite and second-order cone programming. Set-Valued and Variational Analysis, 31( artigo 15), 1-28. doi:10.1007/s11228-023-00676-1
    • NLM

      Fukuda EH, Haeser G, Mito L. On the weak second-order optimality condition for nonlinear semidefinite and second-order cone programming [Internet]. Set-Valued and Variational Analysis. 2023 ; 31( artigo 15): 1-28.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s11228-023-00676-1
    • Vancouver

      Fukuda EH, Haeser G, Mito L. On the weak second-order optimality condition for nonlinear semidefinite and second-order cone programming [Internet]. Set-Valued and Variational Analysis. 2023 ; 31( artigo 15): 1-28.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s11228-023-00676-1
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARMIJO, Nicolas F. e BELLO-CRUZ, Yunier e HAESER, Gabriel. On the convergence of iterative schemes for solving a piecewise linear system of equations. Linear Algebra and its Applications, v. 665, p. 291-314, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2023.02.001. Acesso em: 19 nov. 2025.
    • APA

      Armijo, N. F., Bello-Cruz, Y., & Haeser, G. (2023). On the convergence of iterative schemes for solving a piecewise linear system of equations. Linear Algebra and its Applications, 665, 291-314. doi:10.1016/j.laa.2023.02.001
    • NLM

      Armijo NF, Bello-Cruz Y, Haeser G. On the convergence of iterative schemes for solving a piecewise linear system of equations [Internet]. Linear Algebra and its Applications. 2023 ; 665 291-314.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1016/j.laa.2023.02.001
    • Vancouver

      Armijo NF, Bello-Cruz Y, Haeser G. On the convergence of iterative schemes for solving a piecewise linear system of equations [Internet]. Linear Algebra and its Applications. 2023 ; 665 291-314.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1016/j.laa.2023.02.001
  • Source: Anais. Conference titles: Simpósio Brasileiro de Pesquisa Operacional - SBPO. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, TEORIA DOS JOGOS

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, Luís Felipe e HAESER, Gabriel e KOLOSSOSKI, Oliver. Um método de descida para equilíbrio de Nash. 2023, Anais.. Rio de Janeiro: SOBRAPO, 2023. Disponível em: https://proceedings.science/sbpo-2023/trabalhos/um-metodo-de-descida-para-equilibrio-de-nash?lang=pt-br&check_logged_in=1#download-paper. Acesso em: 19 nov. 2025.
    • APA

      Bueno, L. F., Haeser, G., & Kolossoski, O. (2023). Um método de descida para equilíbrio de Nash. In Anais. Rio de Janeiro: SOBRAPO. Recuperado de https://proceedings.science/sbpo-2023/trabalhos/um-metodo-de-descida-para-equilibrio-de-nash?lang=pt-br&check_logged_in=1#download-paper
    • NLM

      Bueno LF, Haeser G, Kolossoski O. Um método de descida para equilíbrio de Nash [Internet]. Anais. 2023 ;[citado 2025 nov. 19 ] Available from: https://proceedings.science/sbpo-2023/trabalhos/um-metodo-de-descida-para-equilibrio-de-nash?lang=pt-br&check_logged_in=1#download-paper
    • Vancouver

      Bueno LF, Haeser G, Kolossoski O. Um método de descida para equilíbrio de Nash [Internet]. Anais. 2023 ;[citado 2025 nov. 19 ] Available from: https://proceedings.science/sbpo-2023/trabalhos/um-metodo-de-descida-para-equilibrio-de-nash?lang=pt-br&check_logged_in=1#download-paper
  • Source: Mathematics of Operations Research. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. On optimality conditions for nonlinear conic programming. Mathematics of Operations Research, v. 47, n. 3, p. 2160-2185, 2022Tradução . . Disponível em: https://doi.org/10.1287/moor.2021.1203. Acesso em: 19 nov. 2025.
    • APA

      Andreani, R., Gómez, W., Haeser, G., Mito, L., & Ramos, A. (2022). On optimality conditions for nonlinear conic programming. Mathematics of Operations Research, 47( 3), 2160-2185. doi:10.1287/moor.2021.1203
    • NLM

      Andreani R, Gómez W, Haeser G, Mito L, Ramos A. On optimality conditions for nonlinear conic programming [Internet]. Mathematics of Operations Research. 2022 ; 47( 3): 2160-2185.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1287/moor.2021.1203
    • Vancouver

      Andreani R, Gómez W, Haeser G, Mito L, Ramos A. On optimality conditions for nonlinear conic programming [Internet]. Mathematics of Operations Research. 2022 ; 47( 3): 2160-2185.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1287/moor.2021.1203
  • Source: Mathematical Programming Computation. Unidade: IME

    Subjects: OTIMIZAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR, MÉTODOS NUMÉRICOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees. Mathematical Programming Computation, v. 14, n. 1, p. 121-146, 2022Tradução . . Disponível em: https://doi.org/10.1007/s12532-021-00207-9. Acesso em: 19 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Schuverdt, M. L., Secchin, L. D., & Silva e Silva, P. J. (2022). On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees. Mathematical Programming Computation, 14( 1), 121-146. doi:10.1007/s12532-021-00207-9
    • NLM

      Andreani R, Haeser G, Schuverdt ML, Secchin LD, Silva e Silva PJ. On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees [Internet]. Mathematical Programming Computation. 2022 ; 14( 1): 121-146.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s12532-021-00207-9
    • Vancouver

      Andreani R, Haeser G, Schuverdt ML, Secchin LD, Silva e Silva PJ. On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees [Internet]. Mathematical Programming Computation. 2022 ; 14( 1): 121-146.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s12532-021-00207-9
  • Source: Numerical Algorithms. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, OTIMIZAÇÃO NÃO LINEAR, MÉTODOS NUMÉRICOS

    Versão AceitaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. On the best achievable quality of limit points of augmented Lagrangian schemes. Numerical Algorithms, v. 90, n. 2, p. 851-877, 2022Tradução . . Disponível em: https://doi.org/10.1007/s11075-021-01212-8. Acesso em: 19 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Mito, L., Ramos, A., & Secchin, L. D. (2022). On the best achievable quality of limit points of augmented Lagrangian schemes. Numerical Algorithms, 90( 2), 851-877. doi:10.1007/s11075-021-01212-8
    • NLM

      Andreani R, Haeser G, Mito L, Ramos A, Secchin LD. On the best achievable quality of limit points of augmented Lagrangian schemes [Internet]. Numerical Algorithms. 2022 ; 90( 2): 851-877.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s11075-021-01212-8
    • Vancouver

      Andreani R, Haeser G, Mito L, Ramos A, Secchin LD. On the best achievable quality of limit points of augmented Lagrangian schemes [Internet]. Numerical Algorithms. 2022 ; 90( 2): 851-877.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s11075-021-01212-8
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming. Journal of Optimization Theory and Applications, v. 195, p. 42-78, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10957-022-02056-5. Acesso em: 19 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Mito, L., Ramírez, C. H., & Silveira, T. P. da. (2022). Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming. Journal of Optimization Theory and Applications, 195, 42-78. doi:10.1007/s10957-022-02056-5
    • NLM

      Andreani R, Haeser G, Mito L, Ramírez CH, Silveira TP da. Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming [Internet]. Journal of Optimization Theory and Applications. 2022 ; 195 42-78.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10957-022-02056-5
    • Vancouver

      Andreani R, Haeser G, Mito L, Ramírez CH, Silveira TP da. Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming [Internet]. Journal of Optimization Theory and Applications. 2022 ; 195 42-78.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10957-022-02056-5
  • Source: Mathematical Programming. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO CONVEXA, PROGRAMAÇÃO NÃO LINEAR

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel e HINDER, Oliver e YE, Yinyu. On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods. Mathematical Programming, v. 186, n. 1-2, p. 257-288, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10107-019-01454-4. Acesso em: 19 nov. 2025.
    • APA

      Haeser, G., Hinder, O., & Ye, Y. (2021). On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods. Mathematical Programming, 186( 1-2), 257-288. doi:10.1007/s10107-019-01454-4
    • NLM

      Haeser G, Hinder O, Ye Y. On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods [Internet]. Mathematical Programming. 2021 ; 186( 1-2): 257-288.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10107-019-01454-4
    • Vancouver

      Haeser G, Hinder O, Ye Y. On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods [Internet]. Mathematical Programming. 2021 ; 186( 1-2): 257-288.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10107-019-01454-4
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel e RAMOS, Alberto. Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization. Journal of Optimization Theory and Applications, v. 187, n. 2, p. 469-487, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10957-020-01749-z. Acesso em: 19 nov. 2025.
    • APA

      Haeser, G., & Ramos, A. (2020). Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization. Journal of Optimization Theory and Applications, 187( 2), 469-487. doi:10.1007/s10957-020-01749-z
    • NLM

      Haeser G, Ramos A. Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization [Internet]. Journal of Optimization Theory and Applications. 2020 ; 187( 2): 469-487.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10957-020-01749-z
    • Vancouver

      Haeser G, Ramos A. Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization [Internet]. Journal of Optimization Theory and Applications. 2020 ; 187( 2): 469-487.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10957-020-01749-z
  • Source: SIAM Journal on Optimization. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR, TEORIA DOS JOGOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, Luís Felipe e HAESER, Gabriel e ROJAS, Frank Navarro. Optimality conditions and constraint qualifications for generalized Nash equilibrium problems and their practical implications. SIAM Journal on Optimization, v. 29, n. 1, p. 31-54, 2019Tradução . . Disponível em: https://doi.org/10.1137/17m1162524. Acesso em: 19 nov. 2025.
    • APA

      Bueno, L. F., Haeser, G., & Rojas, F. N. (2019). Optimality conditions and constraint qualifications for generalized Nash equilibrium problems and their practical implications. SIAM Journal on Optimization, 29( 1), 31-54. doi:10.1137/17m1162524
    • NLM

      Bueno LF, Haeser G, Rojas FN. Optimality conditions and constraint qualifications for generalized Nash equilibrium problems and their practical implications [Internet]. SIAM Journal on Optimization. 2019 ; 29( 1): 31-54.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1137/17m1162524
    • Vancouver

      Bueno LF, Haeser G, Rojas FN. Optimality conditions and constraint qualifications for generalized Nash equilibrium problems and their practical implications [Internet]. SIAM Journal on Optimization. 2019 ; 29( 1): 31-54.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1137/17m1162524
  • Source: Book of abstracts. Conference titles: International Symposium on Mathematical Programming - ISMP. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MITO, Leonardo et al. Augmented Lagrangian for nonlinear SDPs applied to the covering problem. 2018, Anais.. Philadelphia: Mathematical Optimization Society, 2018. Disponível em: https://ismp2018.sciencesconf.org/data/bookFullProgram.pdf. Acesso em: 19 nov. 2025.
    • APA

      Mito, L., Haeser, G., Birgin, E. J. G., Viana, D., & Bofill, W. (2018). Augmented Lagrangian for nonlinear SDPs applied to the covering problem. In Book of abstracts. Philadelphia: Mathematical Optimization Society. Recuperado de https://ismp2018.sciencesconf.org/data/bookFullProgram.pdf
    • NLM

      Mito L, Haeser G, Birgin EJG, Viana D, Bofill W. Augmented Lagrangian for nonlinear SDPs applied to the covering problem [Internet]. Book of abstracts. 2018 ;[citado 2025 nov. 19 ] Available from: https://ismp2018.sciencesconf.org/data/bookFullProgram.pdf
    • Vancouver

      Mito L, Haeser G, Birgin EJG, Viana D, Bofill W. Augmented Lagrangian for nonlinear SDPs applied to the covering problem [Internet]. Book of abstracts. 2018 ;[citado 2025 nov. 19 ] Available from: https://ismp2018.sciencesconf.org/data/bookFullProgram.pdf
  • Source: Optimization Methods and Software. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, OTIMIZAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR, OTIMIZAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. On second-order optimality conditions in nonlinear optimization. Optimization Methods and Software, v. 32, n. 1, p. 22-38, 2017Tradução . . Disponível em: https://doi.org/10.1080/10556788.2016.1188926. Acesso em: 19 nov. 2025.
    • APA

      Andreani, R., Behling, R., Haeser, G., & Silva, P. J. S. e. (2017). On second-order optimality conditions in nonlinear optimization. Optimization Methods and Software, 32( 1), 22-38. doi:10.1080/10556788.2016.1188926
    • NLM

      Andreani R, Behling R, Haeser G, Silva PJS e. On second-order optimality conditions in nonlinear optimization [Internet]. Optimization Methods and Software. 2017 ; 32( 1): 22-38.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1080/10556788.2016.1188926
    • Vancouver

      Andreani R, Behling R, Haeser G, Silva PJS e. On second-order optimality conditions in nonlinear optimization [Internet]. Optimization Methods and Software. 2017 ; 32( 1): 22-38.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1080/10556788.2016.1188926
  • Source: Optimization. Unidade: IME

    Subjects: OTIMIZAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA, ANÁLISE NUMÉRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEHLING, Roger et al. On the constrained error bound condition and the projected Levenberg–Marquardt method. Optimization, v. 66, n. 8, p. 1397-1411, 2017Tradução . . Disponível em: https://doi.org/10.1080/02331934.2016.1200578. Acesso em: 19 nov. 2025.
    • APA

      Behling, R., Fischer, A., Haeser, G., Ramos, A., & Schönefeld, K. (2017). On the constrained error bound condition and the projected Levenberg–Marquardt method. Optimization, 66( 8), 1397-1411. doi:10.1080/02331934.2016.1200578
    • NLM

      Behling R, Fischer A, Haeser G, Ramos A, Schönefeld K. On the constrained error bound condition and the projected Levenberg–Marquardt method [Internet]. Optimization. 2017 ; 66( 8): 1397-1411.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1080/02331934.2016.1200578
    • Vancouver

      Behling R, Fischer A, Haeser G, Ramos A, Schönefeld K. On the constrained error bound condition and the projected Levenberg–Marquardt method [Internet]. Optimization. 2017 ; 66( 8): 1397-1411.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1080/02331934.2016.1200578
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, CÁLCULO DE VARIAÇÕES, PROGRAMAÇÃO MATEMÁTICA, ANÁLISE NUMÉRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, Luis Felipe e HAESER, Gabriel e MARTÍNEZ, José Mario. A flexible inexact-restoration method for constrained optimization. Journal of Optimization Theory and Applications, v. 165, n. 1, p. 188-208, 2015Tradução . . Disponível em: https://doi.org/10.1007/s10957-014-0572-0. Acesso em: 19 nov. 2025.
    • APA

      Bueno, L. F., Haeser, G., & Martínez, J. M. (2015). A flexible inexact-restoration method for constrained optimization. Journal of Optimization Theory and Applications, 165( 1), 188-208. doi:10.1007/s10957-014-0572-0
    • NLM

      Bueno LF, Haeser G, Martínez JM. A flexible inexact-restoration method for constrained optimization [Internet]. Journal of Optimization Theory and Applications. 2015 ; 165( 1): 188-208.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10957-014-0572-0
    • Vancouver

      Bueno LF, Haeser G, Martínez JM. A flexible inexact-restoration method for constrained optimization [Internet]. Journal of Optimization Theory and Applications. 2015 ; 165( 1): 188-208.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10957-014-0572-0
  • Source: SIAM Journal on Optimization. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Two new weak constraint qualifications and applications. SIAM Journal on Optimization, v. 22, n. 3, p. 1109-1135 , 2012Tradução . . Disponível em: https://doi.org/10.1137/110843939. Acesso em: 19 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Schuverdt, M. L., & Silva, P. J. S. (2012). Two new weak constraint qualifications and applications. SIAM Journal on Optimization, 22( 3), 1109-1135 . doi:10.1137/110843939
    • NLM

      Andreani R, Haeser G, Schuverdt ML, Silva PJS. Two new weak constraint qualifications and applications [Internet]. SIAM Journal on Optimization. 2012 ; 22( 3): 1109-1135 .[citado 2025 nov. 19 ] Available from: https://doi.org/10.1137/110843939
    • Vancouver

      Andreani R, Haeser G, Schuverdt ML, Silva PJS. Two new weak constraint qualifications and applications [Internet]. SIAM Journal on Optimization. 2012 ; 22( 3): 1109-1135 .[citado 2025 nov. 19 ] Available from: https://doi.org/10.1137/110843939

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025