Filtros : "HRUSCHKA, EDUARDO RAUL" Removido: "APRENDIZADO COMPUTACIONAL" Limpar

Filtros



Refine with date range


  • Source: Digital Signal Processing. Unidades: EP, ICMC

    Subjects: ANÁLISE DE SÉRIES TEMPORAIS, MÉTODOS DE DECOMPOSIÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DUARTE, Felipe Simões Lage Gomes et al. Decomposing time series into deterministic and stochastic influences: a survey. Digital Signal Processing, v. 95, p. 1-18, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.dsp.2019.102582. Acesso em: 01 nov. 2024.
    • APA

      Duarte, F. S. L. G., Rios, R. A., Hruschka, E. R., & Mello, R. F. de. (2019). Decomposing time series into deterministic and stochastic influences: a survey. Digital Signal Processing, 95, 1-18. doi:10.1016/j.dsp.2019.102582
    • NLM

      Duarte FSLG, Rios RA, Hruschka ER, Mello RF de. Decomposing time series into deterministic and stochastic influences: a survey [Internet]. Digital Signal Processing. 2019 ; 95 1-18.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.dsp.2019.102582
    • Vancouver

      Duarte FSLG, Rios RA, Hruschka ER, Mello RF de. Decomposing time series into deterministic and stochastic influences: a survey [Internet]. Digital Signal Processing. 2019 ; 95 1-18.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.dsp.2019.102582
  • Source: Proceedings. Conference titles: Brazilian Conference on Intelligent Systems - BRACIS. Unidades: EP, ICMC

    Subjects: MODELOS EM SÉRIES TEMPORAIS, PROCESSOS ESTOCÁSTICOS, PREVISÃO (ANÁLISE DE SÉRIES TEMPORAIS)

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DUARTE, Felipe Simões Lage Gomes et al. Time series decomposition using spring system applied on phase spaces. 2018, Anais.. Piscataway: IEEE, 2018. Disponível em: https://doi.org/10.1109/BRACIS.2018.00093. Acesso em: 01 nov. 2024.
    • APA

      Duarte, F. S. L. G., Rios, R. A., Hruschka, E. R., & Mello, R. F. de. (2018). Time series decomposition using spring system applied on phase spaces. In Proceedings. Piscataway: IEEE. doi:10.1109/BRACIS.2018.00093
    • NLM

      Duarte FSLG, Rios RA, Hruschka ER, Mello RF de. Time series decomposition using spring system applied on phase spaces [Internet]. Proceedings. 2018 ;[citado 2024 nov. 01 ] Available from: https://doi.org/10.1109/BRACIS.2018.00093
    • Vancouver

      Duarte FSLG, Rios RA, Hruschka ER, Mello RF de. Time series decomposition using spring system applied on phase spaces [Internet]. Proceedings. 2018 ;[citado 2024 nov. 01 ] Available from: https://doi.org/10.1109/BRACIS.2018.00093
  • Source: Expert Systems with Applications. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, ALGORITMOS GENÉTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Jonathan de Andrade e HRUSCHKA, Eduardo Raul e GAMA, João. An evolutionary algorithm for clustering data streams with a variable number of clusters. Expert Systems with Applications, v. 67, n. Ja 2017, p. 228-238, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.eswa.2016.09.020. Acesso em: 01 nov. 2024.
    • APA

      Silva, J. de A., Hruschka, E. R., & Gama, J. (2017). An evolutionary algorithm for clustering data streams with a variable number of clusters. Expert Systems with Applications, 67( Ja 2017), 228-238. doi:10.1016/j.eswa.2016.09.020
    • NLM

      Silva J de A, Hruschka ER, Gama J. An evolutionary algorithm for clustering data streams with a variable number of clusters [Internet]. Expert Systems with Applications. 2017 ; 67( Ja 2017): 228-238.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.eswa.2016.09.020
    • Vancouver

      Silva J de A, Hruschka ER, Gama J. An evolutionary algorithm for clustering data streams with a variable number of clusters [Internet]. Expert Systems with Applications. 2017 ; 67( Ja 2017): 228-238.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.eswa.2016.09.020
  • Source: ACM Transactions on Autonomous and Adaptive Systems. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, RECONHECIMENTO DE PADRÕES, ALGORITMOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Jonathan de Andrade e HRUSCHKA, Eduardo Raul. A support system for clustering data streams with a variable number of clusters. ACM Transactions on Autonomous and Adaptive Systems, v. 11, n. 2, p. 11:1-11:26, 2016Tradução . . Disponível em: https://doi.org/10.1145/2932704. Acesso em: 01 nov. 2024.
    • APA

      Silva, J. de A., & Hruschka, E. R. (2016). A support system for clustering data streams with a variable number of clusters. ACM Transactions on Autonomous and Adaptive Systems, 11( 2), 11:1-11:26. doi:10.1145/2932704
    • NLM

      Silva J de A, Hruschka ER. A support system for clustering data streams with a variable number of clusters [Internet]. ACM Transactions on Autonomous and Adaptive Systems. 2016 ; 11( 2): 11:1-11:26.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1145/2932704
    • Vancouver

      Silva J de A, Hruschka ER. A support system for clustering data streams with a variable number of clusters [Internet]. ACM Transactions on Autonomous and Adaptive Systems. 2016 ; 11( 2): 11:1-11:26.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1145/2932704
  • Source: Evolutionary Computation. Unidade: ICMC

    Subjects: COMPUTAÇÃO EVOLUTIVA, ALGORITMOS GENÉTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COVÕES, Thiago Ferreira e HRUSCHKA, Eduardo Raul e GHOSH, Joydeep. Evolving Gaussian mixture models with splitting and merging mutation operators. Evolutionary Computation, v. 24, n. 2, p. 293-317, 2016Tradução . . Disponível em: https://doi.org/10.1162/EVCO_a_00152. Acesso em: 01 nov. 2024.
    • APA

      Covões, T. F., Hruschka, E. R., & Ghosh, J. (2016). Evolving Gaussian mixture models with splitting and merging mutation operators. Evolutionary Computation, 24( 2), 293-317. doi:10.1162/EVCO_a_00152
    • NLM

      Covões TF, Hruschka ER, Ghosh J. Evolving Gaussian mixture models with splitting and merging mutation operators [Internet]. Evolutionary Computation. 2016 ; 24( 2): 293-317.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1162/EVCO_a_00152
    • Vancouver

      Covões TF, Hruschka ER, Ghosh J. Evolving Gaussian mixture models with splitting and merging mutation operators [Internet]. Evolutionary Computation. 2016 ; 24( 2): 293-317.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1162/EVCO_a_00152
  • Source: Integrated Computer-Aided Engineering. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, ALGORITMOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COLETTA, Luiz Fernando Sommaggio et al. Using metaheuristics to optimize the combination of classifier and cluster ensembles. Integrated Computer-Aided Engineering, v. 22, n. 3, p. 229-242, 2015Tradução . . Disponível em: https://doi.org/10.3233/ICA-150485. Acesso em: 01 nov. 2024.
    • APA

      Coletta, L. F. S., Hruschka, E. R., Acharya, A., & Ghosh, J. (2015). Using metaheuristics to optimize the combination of classifier and cluster ensembles. Integrated Computer-Aided Engineering, 22( 3), 229-242. doi:10.3233/ICA-150485
    • NLM

      Coletta LFS, Hruschka ER, Acharya A, Ghosh J. Using metaheuristics to optimize the combination of classifier and cluster ensembles [Internet]. Integrated Computer-Aided Engineering. 2015 ; 22( 3): 229-242.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3233/ICA-150485
    • Vancouver

      Coletta LFS, Hruschka ER, Acharya A, Ghosh J. Using metaheuristics to optimize the combination of classifier and cluster ensembles [Internet]. Integrated Computer-Aided Engineering. 2015 ; 22( 3): 229-242.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3233/ICA-150485
  • Source: Pattern Recognition Letters. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, MINERAÇÃO DE DADOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORRÊA, Geraldo N et al. Interactive textual feature selection for consensus clustering. Pattern Recognition Letters, v. 52, n. ja 2015, p. 25-31, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.patrec.2014.09.008. Acesso em: 01 nov. 2024.
    • APA

      Corrêa, G. N., Marcacini, R. M., Hruschka, E. R., & Rezende, S. O. (2015). Interactive textual feature selection for consensus clustering. Pattern Recognition Letters, 52( ja 2015), 25-31. doi:10.1016/j.patrec.2014.09.008
    • NLM

      Corrêa GN, Marcacini RM, Hruschka ER, Rezende SO. Interactive textual feature selection for consensus clustering [Internet]. Pattern Recognition Letters. 2015 ; 52( ja 2015): 25-31.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.patrec.2014.09.008
    • Vancouver

      Corrêa GN, Marcacini RM, Hruschka ER, Rezende SO. Interactive textual feature selection for consensus clustering [Internet]. Pattern Recognition Letters. 2015 ; 52( ja 2015): 25-31.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.patrec.2014.09.008
  • Source: International Journal of Bio-Inspired Computation. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, ALGORITMOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COLETTA, Luiz Fernando Sommaggio et al. A differential evolution algorithm to optimise the combination of classifier and cluster ensembles. International Journal of Bio-Inspired Computation, v. 7, n. 2, p. 111-124, 2015Tradução . . Disponível em: https://doi.org/10.1504/IJBIC.2015.069288. Acesso em: 01 nov. 2024.
    • APA

      Coletta, L. F. S., Hruschka, E. R., Acharya, A., & Ghosh, J. (2015). A differential evolution algorithm to optimise the combination of classifier and cluster ensembles. International Journal of Bio-Inspired Computation, 7( 2), 111-124. doi:10.1504/IJBIC.2015.069288
    • NLM

      Coletta LFS, Hruschka ER, Acharya A, Ghosh J. A differential evolution algorithm to optimise the combination of classifier and cluster ensembles [Internet]. International Journal of Bio-Inspired Computation. 2015 ; 7( 2): 111-124.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1504/IJBIC.2015.069288
    • Vancouver

      Coletta LFS, Hruschka ER, Acharya A, Ghosh J. A differential evolution algorithm to optimise the combination of classifier and cluster ensembles [Internet]. International Journal of Bio-Inspired Computation. 2015 ; 7( 2): 111-124.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1504/IJBIC.2015.069288
  • Source: Talking about computing and genomic (TACG) : modelos e métodos computacionais em bioinformática. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, MINERAÇÃO DE DADOS, MELHORAMENTO GENÉTICO ANIMAL, PECUÁRIA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONZAGA, André et al. Mineração de dados para identificar atributos genéticos associados à características de interesse econômico à pecuária. Talking about computing and genomic (TACG) : modelos e métodos computacionais em bioinformática. Tradução . Brasília: Embrapa, 2014. . . Acesso em: 01 nov. 2024.
    • APA

      Gonzaga, A., Mudadu, M. de A., Higa, R. H., & Hruschka, E. R. (2014). Mineração de dados para identificar atributos genéticos associados à características de interesse econômico à pecuária. In Talking about computing and genomic (TACG) : modelos e métodos computacionais em bioinformática. Brasília: Embrapa.
    • NLM

      Gonzaga A, Mudadu M de A, Higa RH, Hruschka ER. Mineração de dados para identificar atributos genéticos associados à características de interesse econômico à pecuária. In: Talking about computing and genomic (TACG) : modelos e métodos computacionais em bioinformática. Brasília: Embrapa; 2014. [citado 2024 nov. 01 ]
    • Vancouver

      Gonzaga A, Mudadu M de A, Higa RH, Hruschka ER. Mineração de dados para identificar atributos genéticos associados à características de interesse econômico à pecuária. In: Talking about computing and genomic (TACG) : modelos e métodos computacionais em bioinformática. Brasília: Embrapa; 2014. [citado 2024 nov. 01 ]
  • Source: Proceedings. Conference titles: International Workshop on Semantic Evaluation - SemEval. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, WEB SEMÂNTICA, MÍDIAS SOCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Nádia Felix Felipe da e HRUSCHKA, Eduardo Raul e HRUSCHKA JUNIOR, Estevam Rafael. Biocom_Usp: tweet sentiment analysis with adaptive boosting ensemble. 2014, Anais.. Stroudsburg: ACL, 2014. Disponível em: http://www.aclweb.org/anthology/S/S14/S14-2017.pdf. Acesso em: 01 nov. 2024.
    • APA

      Silva, N. F. F. da, Hruschka, E. R., & Hruschka Junior, E. R. (2014). Biocom_Usp: tweet sentiment analysis with adaptive boosting ensemble. In Proceedings. Stroudsburg: ACL. Recuperado de http://www.aclweb.org/anthology/S/S14/S14-2017.pdf
    • NLM

      Silva NFF da, Hruschka ER, Hruschka Junior ER. Biocom_Usp: tweet sentiment analysis with adaptive boosting ensemble [Internet]. Proceedings. 2014 ;[citado 2024 nov. 01 ] Available from: http://www.aclweb.org/anthology/S/S14/S14-2017.pdf
    • Vancouver

      Silva NFF da, Hruschka ER, Hruschka Junior ER. Biocom_Usp: tweet sentiment analysis with adaptive boosting ensemble [Internet]. Proceedings. 2014 ;[citado 2024 nov. 01 ] Available from: http://www.aclweb.org/anthology/S/S14/S14-2017.pdf
  • Source: Proceedings. Conference titles: Brazilian Conference on Intelligent Systems - BRACIS. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, RECONHECIMENTO DE PADRÕES, WEB SEMÂNTICA, MÍDIAS SOCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COLETTA, Luiz Fernando Sommaggio et al. Combining classification and clustering for tweet sentiment analysis. 2014, Anais.. Los Alamitos: Conference Publishing Services, 2014. Disponível em: https://doi.org/10.1109/BRACIS.2014.46. Acesso em: 01 nov. 2024.
    • APA

      Coletta, L. F. S., Silva, N. F. F. da, Hruschka, E. R., & Hruschka Junior, E. R. (2014). Combining classification and clustering for tweet sentiment analysis. In Proceedings. Los Alamitos: Conference Publishing Services. doi:10.1109/BRACIS.2014.46
    • NLM

      Coletta LFS, Silva NFF da, Hruschka ER, Hruschka Junior ER. Combining classification and clustering for tweet sentiment analysis [Internet]. Proceedings. 2014 ;[citado 2024 nov. 01 ] Available from: https://doi.org/10.1109/BRACIS.2014.46
    • Vancouver

      Coletta LFS, Silva NFF da, Hruschka ER, Hruschka Junior ER. Combining classification and clustering for tweet sentiment analysis [Internet]. Proceedings. 2014 ;[citado 2024 nov. 01 ] Available from: https://doi.org/10.1109/BRACIS.2014.46
  • Source: ACM Transactions on Knowledge Discovery from Data. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, RECONHECIMENTO DE PADRÕES, ALGORITMOS, VISÃO COMPUTACIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ACHARYA, Ayan et al. An optimization framework for combining ensembles of classifiers and clusterers with applications to nontransductive semisupervised learning and transfer learning. ACM Transactions on Knowledge Discovery from Data, v. 9, n. 1, p. 1:1-1:35, 2014Tradução . . Disponível em: https://doi.org/10.1145/2601435. Acesso em: 01 nov. 2024.
    • APA

      Acharya, A., Hruschka, E. R., Ghosh, J., & Acharyya, S. (2014). An optimization framework for combining ensembles of classifiers and clusterers with applications to nontransductive semisupervised learning and transfer learning. ACM Transactions on Knowledge Discovery from Data, 9( 1), 1:1-1:35. doi:10.1145/2601435
    • NLM

      Acharya A, Hruschka ER, Ghosh J, Acharyya S. An optimization framework for combining ensembles of classifiers and clusterers with applications to nontransductive semisupervised learning and transfer learning [Internet]. ACM Transactions on Knowledge Discovery from Data. 2014 ; 9( 1): 1:1-1:35.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1145/2601435
    • Vancouver

      Acharya A, Hruschka ER, Ghosh J, Acharyya S. An optimization framework for combining ensembles of classifiers and clusterers with applications to nontransductive semisupervised learning and transfer learning [Internet]. ACM Transactions on Knowledge Discovery from Data. 2014 ; 9( 1): 1:1-1:35.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1145/2601435
  • Source: Decision Support Systems. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Nádia Felix Felipe da e HRUSCHKA, Eduardo Raul e HRUSCHKA JUNIOR, Estevam Rafael. Tweet sentiment analysis with classifier ensembles. Decision Support Systems, v. 66, p. 170-179, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.dss.2014.07.003. Acesso em: 01 nov. 2024.
    • APA

      Silva, N. F. F. da, Hruschka, E. R., & Hruschka Junior, E. R. (2014). Tweet sentiment analysis with classifier ensembles. Decision Support Systems, 66, 170-179. doi:10.1016/j.dss.2014.07.003
    • NLM

      Silva NFF da, Hruschka ER, Hruschka Junior ER. Tweet sentiment analysis with classifier ensembles [Internet]. Decision Support Systems. 2014 ; 66 170-179.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.dss.2014.07.003
    • Vancouver

      Silva NFF da, Hruschka ER, Hruschka Junior ER. Tweet sentiment analysis with classifier ensembles [Internet]. Decision Support Systems. 2014 ; 66 170-179.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.dss.2014.07.003
  • Source: Journal of Information and Data Management - JIDM. Conference titles: Brazilian Symposium on Databases - SBBD. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COVÕES, Thiago F et al. Hierarchical bottom-up safe semi-supervised support vector machines for multi-class transductive learning. Journal of Information and Data Management - JIDM. Porto Alegre: SBC. Disponível em: http://seer.lcc.ufmg.br/index.php/jidm/article/view/256. Acesso em: 01 nov. 2024. , 2013
    • APA

      Covões, T. F., Barros, R. C., Silva, T. S. da, Hruschka, E. R., & Carvalho, A. C. P. de L. F. de. (2013). Hierarchical bottom-up safe semi-supervised support vector machines for multi-class transductive learning. Journal of Information and Data Management - JIDM. Porto Alegre: SBC. Recuperado de http://seer.lcc.ufmg.br/index.php/jidm/article/view/256
    • NLM

      Covões TF, Barros RC, Silva TS da, Hruschka ER, Carvalho ACP de LF de. Hierarchical bottom-up safe semi-supervised support vector machines for multi-class transductive learning [Internet]. Journal of Information and Data Management - JIDM. 2013 ; 4( 3): 357-372.[citado 2024 nov. 01 ] Available from: http://seer.lcc.ufmg.br/index.php/jidm/article/view/256
    • Vancouver

      Covões TF, Barros RC, Silva TS da, Hruschka ER, Carvalho ACP de LF de. Hierarchical bottom-up safe semi-supervised support vector machines for multi-class transductive learning [Internet]. Journal of Information and Data Management - JIDM. 2013 ; 4( 3): 357-372.[citado 2024 nov. 01 ] Available from: http://seer.lcc.ufmg.br/index.php/jidm/article/view/256
  • Source: IEEE Transactions on Neural Networks and Learning Systems. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COVÕES, Thiago F e HRUSCHKA, Eduardo Raul e GHOSH, Joydeep. Competitive learning with pairwise constraints. IEEE Transactions on Neural Networks and Learning Systems, v. 24, n. ja 2013, p. 164-169, 2013Tradução . . Disponível em: https://doi.org/10.1109/TNNLS.2012.2227064. Acesso em: 01 nov. 2024.
    • APA

      Covões, T. F., Hruschka, E. R., & Ghosh, J. (2013). Competitive learning with pairwise constraints. IEEE Transactions on Neural Networks and Learning Systems, 24( ja 2013), 164-169. doi:10.1109/TNNLS.2012.2227064
    • NLM

      Covões TF, Hruschka ER, Ghosh J. Competitive learning with pairwise constraints [Internet]. IEEE Transactions on Neural Networks and Learning Systems. 2013 ; 24( ja 2013): 164-169.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1109/TNNLS.2012.2227064
    • Vancouver

      Covões TF, Hruschka ER, Ghosh J. Competitive learning with pairwise constraints [Internet]. IEEE Transactions on Neural Networks and Learning Systems. 2013 ; 24( ja 2013): 164-169.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1109/TNNLS.2012.2227064
  • Source: Proceedings. Conference titles: BRICS Countries Congress on Computational Intelligence - BRICS-CCI. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COLETTA, Luiz Fernando Sommaggio et al. Towards the use of metaheuristics for optimizing the combination of classifier and cluster ensembles. 2013, Anais.. Piscataway: IEEE, 2013. Disponível em: https://doi.org/10.1109/BRICS-CCI-CBIC.2013.86. Acesso em: 01 nov. 2024.
    • APA

      Coletta, L. F. S., Hruschka, E. R., Acharya, A., & Ghosh, J. (2013). Towards the use of metaheuristics for optimizing the combination of classifier and cluster ensembles. In Proceedings. Piscataway: IEEE. doi:10.1109/BRICS-CCI-CBIC.2013.86
    • NLM

      Coletta LFS, Hruschka ER, Acharya A, Ghosh J. Towards the use of metaheuristics for optimizing the combination of classifier and cluster ensembles [Internet]. Proceedings. 2013 ;[citado 2024 nov. 01 ] Available from: https://doi.org/10.1109/BRICS-CCI-CBIC.2013.86
    • Vancouver

      Coletta LFS, Hruschka ER, Acharya A, Ghosh J. Towards the use of metaheuristics for optimizing the combination of classifier and cluster ensembles [Internet]. Proceedings. 2013 ;[citado 2024 nov. 01 ] Available from: https://doi.org/10.1109/BRICS-CCI-CBIC.2013.86
  • Source: Data & Knowledge Engineering. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Jonathan de Andrade e HRUSCHKA, Eduardo Raul. An experimental study on the use of nearest neighbor-based imputation algorithms for classification tasks. Data & Knowledge Engineering, v. 84, p. 47-58, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.datak.2012.12.006. Acesso em: 01 nov. 2024.
    • APA

      Silva, J. de A., & Hruschka, E. R. (2013). An experimental study on the use of nearest neighbor-based imputation algorithms for classification tasks. Data & Knowledge Engineering, 84, 47-58. doi:10.1016/j.datak.2012.12.006
    • NLM

      Silva J de A, Hruschka ER. An experimental study on the use of nearest neighbor-based imputation algorithms for classification tasks [Internet]. Data & Knowledge Engineering. 2013 ; 84 47-58.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.datak.2012.12.006
    • Vancouver

      Silva J de A, Hruschka ER. An experimental study on the use of nearest neighbor-based imputation algorithms for classification tasks [Internet]. Data & Knowledge Engineering. 2013 ; 84 47-58.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.datak.2012.12.006
  • Source: Proceedings. Conference titles: IEEE Congress on Evolutionary Computation - CEC. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COVÕES, Thiago F e HRUSCHKA, Eduardo Raul. Unsupervised learning of Gaussian mixture models: evolutionary create and eliminate for expectation maximization algorithm. 2013, Anais.. Piscataway: IEEE, 2013. Disponível em: https://doi.org/10.1109/CEC.2013.6557962. Acesso em: 01 nov. 2024.
    • APA

      Covões, T. F., & Hruschka, E. R. (2013). Unsupervised learning of Gaussian mixture models: evolutionary create and eliminate for expectation maximization algorithm. In Proceedings. Piscataway: IEEE. doi:10.1109/CEC.2013.6557962
    • NLM

      Covões TF, Hruschka ER. Unsupervised learning of Gaussian mixture models: evolutionary create and eliminate for expectation maximization algorithm [Internet]. Proceedings. 2013 ;[citado 2024 nov. 01 ] Available from: https://doi.org/10.1109/CEC.2013.6557962
    • Vancouver

      Covões TF, Hruschka ER. Unsupervised learning of Gaussian mixture models: evolutionary create and eliminate for expectation maximization algorithm [Internet]. Proceedings. 2013 ;[citado 2024 nov. 01 ] Available from: https://doi.org/10.1109/CEC.2013.6557962
  • Source: Intelligent Data Analysis. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COVÕES, Thiago Ferreira e HRUSCHKA, Eduardo Raul e GHOSH, Joydeep. A study of K-means-based algorithms for constrained clustering. Intelligent Data Analysis, v. 17, n. 3, p. 485-505, 2013Tradução . . Disponível em: https://doi.org/10.3233/IDA-130590. Acesso em: 01 nov. 2024.
    • APA

      Covões, T. F., Hruschka, E. R., & Ghosh, J. (2013). A study of K-means-based algorithms for constrained clustering. Intelligent Data Analysis, 17( 3), 485-505. doi:10.3233/IDA-130590
    • NLM

      Covões TF, Hruschka ER, Ghosh J. A study of K-means-based algorithms for constrained clustering [Internet]. Intelligent Data Analysis. 2013 ; 17( 3): 485-505.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3233/IDA-130590
    • Vancouver

      Covões TF, Hruschka ER, Ghosh J. A study of K-means-based algorithms for constrained clustering [Internet]. Intelligent Data Analysis. 2013 ; 17( 3): 485-505.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3233/IDA-130590
  • Source: Proceedings. Conference titles: SIAM International Conference on Data Mining. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ACHARYA, Ayan et al. Probabilistic combination of classifier and cluster ensembles for non-transductive learning. 2013, Anais.. Philadelphia: SIAM, 2013. Disponível em: https://doi.org/10.1137/1.9781611972832.32. Acesso em: 01 nov. 2024.
    • APA

      Acharya, A., Hruschka, E. R., Ghosh, J., Sarwar, B., & Ruvini, J. -D. (2013). Probabilistic combination of classifier and cluster ensembles for non-transductive learning. In Proceedings. Philadelphia: SIAM. doi:10.1137/1.9781611972832.32
    • NLM

      Acharya A, Hruschka ER, Ghosh J, Sarwar B, Ruvini J-D. Probabilistic combination of classifier and cluster ensembles for non-transductive learning [Internet]. Proceedings. 2013 ;[citado 2024 nov. 01 ] Available from: https://doi.org/10.1137/1.9781611972832.32
    • Vancouver

      Acharya A, Hruschka ER, Ghosh J, Sarwar B, Ruvini J-D. Probabilistic combination of classifier and cluster ensembles for non-transductive learning [Internet]. Proceedings. 2013 ;[citado 2024 nov. 01 ] Available from: https://doi.org/10.1137/1.9781611972832.32

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024