A support system for clustering data streams with a variable number of clusters (2016)
- Authors:
- Autor USP: HRUSCHKA, EDUARDO RAUL - ICMC
- Unidade: ICMC
- DOI: 10.1145/2932704
- Subjects: INTELIGÊNCIA ARTIFICIAL; RECONHECIMENTO DE PADRÕES; ALGORITMOS
- Keywords: Clustering; data stream; online clustering
- Language: Inglês
- Imprenta:
- Source:
- Título: ACM Transactions on Autonomous and Adaptive Systems
- ISSN: 1556-4665
- Volume/Número/Paginação/Ano: v. 11, n. 2, p. 11:1-11:26, July 2016
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
SILVA, Jonathan de Andrade e HRUSCHKA, Eduardo Raul. A support system for clustering data streams with a variable number of clusters. ACM Transactions on Autonomous and Adaptive Systems, v. 11, n. 2, p. 11:1-11:26, 2016Tradução . . Disponível em: https://doi.org/10.1145/2932704. Acesso em: 04 ago. 2025. -
APA
Silva, J. de A., & Hruschka, E. R. (2016). A support system for clustering data streams with a variable number of clusters. ACM Transactions on Autonomous and Adaptive Systems, 11( 2), 11:1-11:26. doi:10.1145/2932704 -
NLM
Silva J de A, Hruschka ER. A support system for clustering data streams with a variable number of clusters [Internet]. ACM Transactions on Autonomous and Adaptive Systems. 2016 ; 11( 2): 11:1-11:26.[citado 2025 ago. 04 ] Available from: https://doi.org/10.1145/2932704 -
Vancouver
Silva J de A, Hruschka ER. A support system for clustering data streams with a variable number of clusters [Internet]. ACM Transactions on Autonomous and Adaptive Systems. 2016 ; 11( 2): 11:1-11:26.[citado 2025 ago. 04 ] Available from: https://doi.org/10.1145/2932704 - Towards improving cluster-based feature selection with a simplified silhouette filter
- Document clustering for forensic computing: an approach for improving computer inspection
- Document clustering for forensic analysis: an approach for improving computer inspection
- Evolving Gaussian mixture models with splitting and merging mutation operators
- An optimization framework for combining ensembles of classifiers and clusterers with applications to nontransductive semisupervised learning and transfer learning
- An experimental study on the use of nearest neighbor-based imputation algorithms for classification tasks
- Unsupervised learning of Gaussian mixture models: evolutionary create and eliminate for expectation maximization algorithm
- Transfer learning with cluster ensembles
- An Experimental Study on Unsupervised Clustering-Based Feature Selection Methods
- On the influence of imputation in classification: practical issues
Informações sobre o DOI: 10.1145/2932704 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas