An evolutionary algorithm for clustering data streams with a variable number of clusters (2017)
- Authors:
- Autor USP: HRUSCHKA, EDUARDO RAUL - ICMC
- Unidade: ICMC
- DOI: 10.1016/j.eswa.2016.09.020
- Subjects: INTELIGÊNCIA ARTIFICIAL; ALGORITMOS GENÉTICOS
- Keywords: Evolutionary algorithms; Clustering; Data streams; Concept drift
- Language: Inglês
- Imprenta:
- Source:
- Título: Expert Systems with Applications
- ISSN: 0957-4174
- Volume/Número/Paginação/Ano: v. 67, p. 228-238, Jan. 2017
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
SILVA, Jonathan de Andrade e HRUSCHKA, Eduardo Raul e GAMA, João. An evolutionary algorithm for clustering data streams with a variable number of clusters. Expert Systems with Applications, v. 67, n. Ja 2017, p. 228-238, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.eswa.2016.09.020. Acesso em: 10 jan. 2026. -
APA
Silva, J. de A., Hruschka, E. R., & Gama, J. (2017). An evolutionary algorithm for clustering data streams with a variable number of clusters. Expert Systems with Applications, 67( Ja 2017), 228-238. doi:10.1016/j.eswa.2016.09.020 -
NLM
Silva J de A, Hruschka ER, Gama J. An evolutionary algorithm for clustering data streams with a variable number of clusters [Internet]. Expert Systems with Applications. 2017 ; 67( Ja 2017): 228-238.[citado 2026 jan. 10 ] Available from: https://doi.org/10.1016/j.eswa.2016.09.020 -
Vancouver
Silva J de A, Hruschka ER, Gama J. An evolutionary algorithm for clustering data streams with a variable number of clusters [Internet]. Expert Systems with Applications. 2017 ; 67( Ja 2017): 228-238.[citado 2026 jan. 10 ] Available from: https://doi.org/10.1016/j.eswa.2016.09.020 - Agrupamento de documentos aplicado à computação forense: uma abordagem para aperfeiçoar análises periciais de computadores
- Competitive learning with pairwise constraints
- An optimization framework for combining ensembles of classifiers and clusterers with applications to nontransductive semisupervised learning and transfer learning
- Evolving Gaussian mixture models with splitting and merging mutation operators
- Agregação de classificadores e agrupadores: uma abordagem para aprendizado semi-supervisionado e para transferência de conhecimento
- Document clustering for forensic computing: an approach for improving computer inspection
- Towards improving cluster-based feature selection with a simplified silhouette filter
- EACImpute: an evolutionary algorithm for clustering-based imputation
- An evolutionary algorithm for missing values substitution in classification tasks
- Document clustering for forensic analysis: an approach for improving computer inspection
Informações sobre o DOI: 10.1016/j.eswa.2016.09.020 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
