A cluster-based feature selection approach (2009)
- Authors:
- Autor USP: HRUSCHKA, EDUARDO RAUL - ICMC
- Unidade: ICMC
- DOI: 10.1007/978-3-642-02319-4_20
- Assunto: INTELIGÊNCIA ARTIFICIAL
- Language: Inglês
- Imprenta:
- Source:
- Título: Lecture Notes in Artificial Intelligence
- ISSN: 0302-9743
- Volume/Número/Paginação/Ano: v. 5572, p. 169-176, 2009
- Conference titles: International Conference Hybrid Artificial Intelligence Systems - HAIS
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
COVÕES, Thiago Ferreira et al. A cluster-based feature selection approach. Lecture Notes in Artificial Intelligence. Berlin: Springer. Disponível em: https://doi.org/10.1007/978-3-642-02319-4_20. Acesso em: 23 jan. 2026. , 2009 -
APA
Covões, T. F., Hruschka, E. R., Castro, L. N. de, & Santos, Á. M. dos. (2009). A cluster-based feature selection approach. Lecture Notes in Artificial Intelligence. Berlin: Springer. doi:10.1007/978-3-642-02319-4_20 -
NLM
Covões TF, Hruschka ER, Castro LN de, Santos ÁM dos. A cluster-based feature selection approach [Internet]. Lecture Notes in Artificial Intelligence. 2009 ; 5572 169-176.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1007/978-3-642-02319-4_20 -
Vancouver
Covões TF, Hruschka ER, Castro LN de, Santos ÁM dos. A cluster-based feature selection approach [Internet]. Lecture Notes in Artificial Intelligence. 2009 ; 5572 169-176.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1007/978-3-642-02319-4_20 - A distance-based mutation operator for learning bayesian network structures using evolutionary algorithms
- Evolving Gaussian mixture models with splitting and merging mutation operators
- Document clustering for forensic analysis: an approach for improving computer inspection
- Document clustering for forensic computing: an approach for improving computer inspection
- Agregação de classificadores e agrupadores: uma abordagem para aprendizado semi-supervisionado e para transferência de conhecimento
- Competitive learning with pairwise constraints
- An optimization framework for combining ensembles of classifiers and clusterers with applications to nontransductive semisupervised learning and transfer learning
- EACImpute: an evolutionary algorithm for clustering-based imputation
- An evolutionary algorithm for missing values substitution in classification tasks
- Towards improving cluster-based feature selection with a simplified silhouette filter
Informações sobre o DOI: 10.1007/978-3-642-02319-4_20 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
