On the influence of imputation in classification: practical issues (2009)
- Authors:
- Autor USP: HRUSCHKA, EDUARDO RAUL - ICMC
- Unidade: ICMC
- DOI: 10.1080/09528130802246602
- Assunto: INTELIGÊNCIA ARTIFICIAL
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Experimental & Theoretical Artificial Intelligence
- ISSN: 0952-813X
- Volume/Número/Paginação/Ano: v. 21, n. 1, p. 43 - 58, 2009
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
HRUSCHKA, Eduardo Raul et al. On the influence of imputation in classification: practical issues. Journal of Experimental & Theoretical Artificial Intelligence, v. 21, n. 1, p. 43 - 58, 2009Tradução . . Disponível em: https://doi.org/10.1080/09528130802246602. Acesso em: 12 fev. 2026. -
APA
Hruschka, E. R., Garcia, A. J. T., Hruschka Junior, E. R., & Ebecken, N. F. F. (2009). On the influence of imputation in classification: practical issues. Journal of Experimental & Theoretical Artificial Intelligence, 21( 1), 43 - 58. doi:10.1080/09528130802246602 -
NLM
Hruschka ER, Garcia AJT, Hruschka Junior ER, Ebecken NFF. On the influence of imputation in classification: practical issues [Internet]. Journal of Experimental & Theoretical Artificial Intelligence. 2009 ; 21( 1): 43 - 58.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1080/09528130802246602 -
Vancouver
Hruschka ER, Garcia AJT, Hruschka Junior ER, Ebecken NFF. On the influence of imputation in classification: practical issues [Internet]. Journal of Experimental & Theoretical Artificial Intelligence. 2009 ; 21( 1): 43 - 58.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1080/09528130802246602 - An evolutionary algorithm for clustering data streams with a variable number of clusters
- An Experimental Study on Unsupervised Clustering-Based Feature Selection Methods
- Using both latent and supervised shared topics for multitask learning
- A study of K-means-based algorithms for constrained clustering
- Biocom_Usp: tweet sentiment analysis with adaptive boosting ensemble
- A semi-supervised approach to estimate the number of clusters per class
- Classification with multi-modal classes using evolutionary algorithms and constrained clustering
- A distance-based mutation operator for learning bayesian network structures using evolutionary algorithms
- Evolving Gaussian mixture models with splitting and merging mutation operators
- A cluster-based feature selection approach
Informações sobre o DOI: 10.1080/09528130802246602 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
