Biocom_Usp: tweet sentiment analysis with adaptive boosting ensemble (2014)
- Authors:
- Autor USP: HRUSCHKA, EDUARDO RAUL - ICMC
- Unidade: ICMC
- Subjects: INTELIGÊNCIA ARTIFICIAL; WEB SEMÂNTICA; MÍDIAS SOCIAIS
- Language: Inglês
- Imprenta:
- Publisher: ACL
- Publisher place: Stroudsburg
- Date published: 2014
- Source:
- Título: Proceedings
- Conference titles: International Workshop on Semantic Evaluation - SemEval
-
ABNT
SILVA, Nádia Felix Felipe da e HRUSCHKA, Eduardo Raul e HRUSCHKA JUNIOR, Estevam Rafael. Biocom_Usp: tweet sentiment analysis with adaptive boosting ensemble. 2014, Anais.. Stroudsburg: ACL, 2014. Disponível em: http://www.aclweb.org/anthology/S/S14/S14-2017.pdf. Acesso em: 29 dez. 2025. -
APA
Silva, N. F. F. da, Hruschka, E. R., & Hruschka Junior, E. R. (2014). Biocom_Usp: tweet sentiment analysis with adaptive boosting ensemble. In Proceedings. Stroudsburg: ACL. Recuperado de http://www.aclweb.org/anthology/S/S14/S14-2017.pdf -
NLM
Silva NFF da, Hruschka ER, Hruschka Junior ER. Biocom_Usp: tweet sentiment analysis with adaptive boosting ensemble [Internet]. Proceedings. 2014 ;[citado 2025 dez. 29 ] Available from: http://www.aclweb.org/anthology/S/S14/S14-2017.pdf -
Vancouver
Silva NFF da, Hruschka ER, Hruschka Junior ER. Biocom_Usp: tweet sentiment analysis with adaptive boosting ensemble [Internet]. Proceedings. 2014 ;[citado 2025 dez. 29 ] Available from: http://www.aclweb.org/anthology/S/S14/S14-2017.pdf - An experimental study on the use of nearest neighbor-based imputation algorithms for classification tasks
- Unsupervised learning of Gaussian mixture models: evolutionary create and eliminate for expectation maximization algorithm
- Transfer learning with cluster ensembles
- An Experimental Study on Unsupervised Clustering-Based Feature Selection Methods
- On the influence of imputation in classification: practical issues
- Agrupamento de documentos aplicado à computação forense: uma abordagem para aperfeiçoar análises periciais de computadores
- A semi-supervised approach to estimate the number of clusters per class
- A study of K-means-based algorithms for constrained clustering
- Probabilistic combination of classifier and cluster ensembles for non-transductive learning
- Using both latent and supervised shared topics for multitask learning
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
