A distance-based mutation operator for learning bayesian network structures using evolutionary algorithms (2010)
- Authors:
- Autor USP: HRUSCHKA, EDUARDO RAUL - ICMC
- Unidade: ICMC
- DOI: 10.1109/CEC.2010.5586049
- Assunto: INTELIGÊNCIA ARTIFICIAL
- Language: Inglês
- Imprenta:
- Publisher: Institute of Electrical and Electronics Engineers - IEEE
- Publisher place: Piscataway
- Date published: 2010
- Source:
- Título: Proceedings
- Conference titles: IEEE World Congress on Computational Intelligence - WCCI
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
SANTOS, Edimilson Batista dos et al. A distance-based mutation operator for learning bayesian network structures using evolutionary algorithms. 2010, Anais.. Piscataway: Institute of Electrical and Electronics Engineers - IEEE, 2010. Disponível em: https://doi.org/10.1109/CEC.2010.5586049. Acesso em: 23 jan. 2026. -
APA
Santos, E. B. dos, Hruschka Junior, E. R., Hruschka, E. R., & Ebecken, N. F. F. (2010). A distance-based mutation operator for learning bayesian network structures using evolutionary algorithms. In Proceedings. Piscataway: Institute of Electrical and Electronics Engineers - IEEE. doi:10.1109/CEC.2010.5586049 -
NLM
Santos EB dos, Hruschka Junior ER, Hruschka ER, Ebecken NFF. A distance-based mutation operator for learning bayesian network structures using evolutionary algorithms [Internet]. Proceedings. 2010 ;[citado 2026 jan. 23 ] Available from: https://doi.org/10.1109/CEC.2010.5586049 -
Vancouver
Santos EB dos, Hruschka Junior ER, Hruschka ER, Ebecken NFF. A distance-based mutation operator for learning bayesian network structures using evolutionary algorithms [Internet]. Proceedings. 2010 ;[citado 2026 jan. 23 ] Available from: https://doi.org/10.1109/CEC.2010.5586049 - Evolving Gaussian mixture models with splitting and merging mutation operators
- A cluster-based feature selection approach
- Document clustering for forensic analysis: an approach for improving computer inspection
- Document clustering for forensic computing: an approach for improving computer inspection
- Agregação de classificadores e agrupadores: uma abordagem para aprendizado semi-supervisionado e para transferência de conhecimento
- Competitive learning with pairwise constraints
- An optimization framework for combining ensembles of classifiers and clusterers with applications to nontransductive semisupervised learning and transfer learning
- EACImpute: an evolutionary algorithm for clustering-based imputation
- An evolutionary algorithm for missing values substitution in classification tasks
- Towards improving cluster-based feature selection with a simplified silhouette filter
Informações sobre o DOI: 10.1109/CEC.2010.5586049 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
