Competitive learning with pairwise constraints (2013)
- Authors:
- Autor USP: HRUSCHKA, EDUARDO RAUL - ICMC
- Unidade: ICMC
- DOI: 10.1109/TNNLS.2012.2227064
- Assunto: INTELIGÊNCIA ARTIFICIAL
- Language: Inglês
- Imprenta:
- Publisher place: Los Alamitos
- Date published: 2013
- Source:
- Título: IEEE Transactions on Neural Networks and Learning Systems
- ISSN: 2162-237X
- Volume/Número/Paginação/Ano: v. 24, n. 1, p. 164-169, jan. 2013
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
COVÕES, Thiago F e HRUSCHKA, Eduardo Raul e GHOSH, Joydeep. Competitive learning with pairwise constraints. IEEE Transactions on Neural Networks and Learning Systems, v. 24, n. ja 2013, p. 164-169, 2013Tradução . . Disponível em: https://doi.org/10.1109/TNNLS.2012.2227064. Acesso em: 10 jan. 2026. -
APA
Covões, T. F., Hruschka, E. R., & Ghosh, J. (2013). Competitive learning with pairwise constraints. IEEE Transactions on Neural Networks and Learning Systems, 24( ja 2013), 164-169. doi:10.1109/TNNLS.2012.2227064 -
NLM
Covões TF, Hruschka ER, Ghosh J. Competitive learning with pairwise constraints [Internet]. IEEE Transactions on Neural Networks and Learning Systems. 2013 ; 24( ja 2013): 164-169.[citado 2026 jan. 10 ] Available from: https://doi.org/10.1109/TNNLS.2012.2227064 -
Vancouver
Covões TF, Hruschka ER, Ghosh J. Competitive learning with pairwise constraints [Internet]. IEEE Transactions on Neural Networks and Learning Systems. 2013 ; 24( ja 2013): 164-169.[citado 2026 jan. 10 ] Available from: https://doi.org/10.1109/TNNLS.2012.2227064 - Agrupamento de documentos aplicado à computação forense: uma abordagem para aperfeiçoar análises periciais de computadores
- An optimization framework for combining ensembles of classifiers and clusterers with applications to nontransductive semisupervised learning and transfer learning
- Evolving Gaussian mixture models with splitting and merging mutation operators
- Agregação de classificadores e agrupadores: uma abordagem para aprendizado semi-supervisionado e para transferência de conhecimento
- Document clustering for forensic computing: an approach for improving computer inspection
- Towards improving cluster-based feature selection with a simplified silhouette filter
- EACImpute: an evolutionary algorithm for clustering-based imputation
- An evolutionary algorithm for missing values substitution in classification tasks
- Document clustering for forensic analysis: an approach for improving computer inspection
- Splitting and merging Gaussian mixture model components: an evolutionary approach
Informações sobre o DOI: 10.1109/TNNLS.2012.2227064 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
