Probabilistic combination of classifier and cluster ensembles for non-transductive learning (2013)
- Authors:
- Autor USP: HRUSCHKA, EDUARDO RAUL - ICMC
- Unidade: ICMC
- DOI: 10.1137/1.9781611972832.32
- Assunto: INTELIGÊNCIA ARTIFICIAL
- Language: Inglês
- Imprenta:
- Publisher: SIAM
- Publisher place: Philadelphia
- Date published: 2013
- Source:
- Título: Proceedings
- ISSN: 2326-7828
- Conference titles: SIAM International Conference on Data Mining
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
ACHARYA, Ayan et al. Probabilistic combination of classifier and cluster ensembles for non-transductive learning. 2013, Anais.. Philadelphia: SIAM, 2013. Disponível em: https://doi.org/10.1137/1.9781611972832.32. Acesso em: 29 dez. 2025. -
APA
Acharya, A., Hruschka, E. R., Ghosh, J., Sarwar, B., & Ruvini, J. -D. (2013). Probabilistic combination of classifier and cluster ensembles for non-transductive learning. In Proceedings. Philadelphia: SIAM. doi:10.1137/1.9781611972832.32 -
NLM
Acharya A, Hruschka ER, Ghosh J, Sarwar B, Ruvini J-D. Probabilistic combination of classifier and cluster ensembles for non-transductive learning [Internet]. Proceedings. 2013 ;[citado 2025 dez. 29 ] Available from: https://doi.org/10.1137/1.9781611972832.32 -
Vancouver
Acharya A, Hruschka ER, Ghosh J, Sarwar B, Ruvini J-D. Probabilistic combination of classifier and cluster ensembles for non-transductive learning [Internet]. Proceedings. 2013 ;[citado 2025 dez. 29 ] Available from: https://doi.org/10.1137/1.9781611972832.32 - An experimental study on the use of nearest neighbor-based imputation algorithms for classification tasks
- Unsupervised learning of Gaussian mixture models: evolutionary create and eliminate for expectation maximization algorithm
- Transfer learning with cluster ensembles
- An Experimental Study on Unsupervised Clustering-Based Feature Selection Methods
- On the influence of imputation in classification: practical issues
- Agrupamento de documentos aplicado à computação forense: uma abordagem para aperfeiçoar análises periciais de computadores
- A semi-supervised approach to estimate the number of clusters per class
- A study of K-means-based algorithms for constrained clustering
- Using both latent and supervised shared topics for multitask learning
- Biocom_Usp: tweet sentiment analysis with adaptive boosting ensemble
Informações sobre o DOI: 10.1137/1.9781611972832.32 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
