A differential evolution algorithm to optimise the combination of classifier and cluster ensembles (2015)
- Authors:
- USP affiliated authors: HRUSCHKA, EDUARDO RAUL - ICMC ; COLETTA, LUIZ FERNANDO SOMMAGGIO - ICMC
- Unidade: ICMC
- DOI: 10.1504/IJBIC.2015.069288
- Subjects: INTELIGÊNCIA ARTIFICIAL; ALGORITMOS
- Language: Inglês
- Imprenta:
- Source:
- Título: International Journal of Bio-Inspired Computation
- ISSN: 1758-0366
- Volume/Número/Paginação/Ano: v. 7, n. 2, p. 111-124, 2015
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
COLETTA, Luiz Fernando Sommaggio et al. A differential evolution algorithm to optimise the combination of classifier and cluster ensembles. International Journal of Bio-Inspired Computation, v. 7, n. 2, p. 111-124, 2015Tradução . . Disponível em: https://doi.org/10.1504/IJBIC.2015.069288. Acesso em: 13 fev. 2026. -
APA
Coletta, L. F. S., Hruschka, E. R., Acharya, A., & Ghosh, J. (2015). A differential evolution algorithm to optimise the combination of classifier and cluster ensembles. International Journal of Bio-Inspired Computation, 7( 2), 111-124. doi:10.1504/IJBIC.2015.069288 -
NLM
Coletta LFS, Hruschka ER, Acharya A, Ghosh J. A differential evolution algorithm to optimise the combination of classifier and cluster ensembles [Internet]. International Journal of Bio-Inspired Computation. 2015 ; 7( 2): 111-124.[citado 2026 fev. 13 ] Available from: https://doi.org/10.1504/IJBIC.2015.069288 -
Vancouver
Coletta LFS, Hruschka ER, Acharya A, Ghosh J. A differential evolution algorithm to optimise the combination of classifier and cluster ensembles [Internet]. International Journal of Bio-Inspired Computation. 2015 ; 7( 2): 111-124.[citado 2026 fev. 13 ] Available from: https://doi.org/10.1504/IJBIC.2015.069288 - Towards the use of metaheuristics for optimizing the combination of classifier and cluster ensembles
- Using metaheuristics to optimize the combination of classifier and cluster ensembles
- Combining classification and clustering for tweet sentiment analysis
- A survey and comparative study of tweet sentiment analysis via semi-supervised learning
- Abordagens para combinar classificadores e agrupadores em problemas de classificação
- Agrupamento de dados fuzzy colaborativo
- On the influence of imputation in classification: practical issues
- An evolutionary algorithm for clustering data streams with a variable number of clusters
- An Experimental Study on Unsupervised Clustering-Based Feature Selection Methods
- Using both latent and supervised shared topics for multitask learning
Informações sobre o DOI: 10.1504/IJBIC.2015.069288 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
