Filtros : "Mencattini, Igor" Limpar

Filtros



Limitar por data


  • Unidade: ICMC

    Assuntos: TEORIA DE GALOIS, GRUPOS DE PERMUTAÇÃO, POLINÔMIOS

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MELO, Roberta Agnes Mendes. Grupos de permutações solúveis. 2025. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2025. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-13052025-140619/. Acesso em: 06 out. 2025.
    • APA

      Melo, R. A. M. (2025). Grupos de permutações solúveis (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-13052025-140619/
    • NLM

      Melo RAM. Grupos de permutações solúveis [Internet]. 2025 ;[citado 2025 out. 06 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-13052025-140619/
    • Vancouver

      Melo RAM. Grupos de permutações solúveis [Internet]. 2025 ;[citado 2025 out. 06 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-13052025-140619/
  • Fonte: Letters in Mathematical Physics. Unidade: ICMC

    Assuntos: SISTEMAS HAMILTONIANOS, GEOMETRIA SIMPLÉTICA, MECÂNICA HAMILTONIANA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHUÑO VIZARRETA, Eber Daniel et al. Poisson quasi-Nijenhuis manifolds, closed Toda lattices, and generalized recursion relations. Letters in Mathematical Physics, v. 115, n. 4, p. 1-22, 2025Tradução . . Disponível em: https://doi.org/10.1007/s11005-025-01970-9. Acesso em: 06 out. 2025.
    • APA

      Chuño Vizarreta, E. D., Falqui, G., Mencattini, I., & Pedroni, M. (2025). Poisson quasi-Nijenhuis manifolds, closed Toda lattices, and generalized recursion relations. Letters in Mathematical Physics, 115( 4), 1-22. doi:10.1007/s11005-025-01970-9
    • NLM

      Chuño Vizarreta ED, Falqui G, Mencattini I, Pedroni M. Poisson quasi-Nijenhuis manifolds, closed Toda lattices, and generalized recursion relations [Internet]. Letters in Mathematical Physics. 2025 ; 115( 4): 1-22.[citado 2025 out. 06 ] Available from: https://doi.org/10.1007/s11005-025-01970-9
    • Vancouver

      Chuño Vizarreta ED, Falqui G, Mencattini I, Pedroni M. Poisson quasi-Nijenhuis manifolds, closed Toda lattices, and generalized recursion relations [Internet]. Letters in Mathematical Physics. 2025 ; 115( 4): 1-22.[citado 2025 out. 06 ] Available from: https://doi.org/10.1007/s11005-025-01970-9
  • Fonte: Journal of Computational Dynamics. Unidade: ICMC

    Assuntos: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRAS DE LIE, ÁLGEBRAS DE HOPF, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBRAHIMI-FARD, Kurusch e MENCATTINI, Igor e QUESNEY, Alexandre Thomas Guillaume. What is the Magnus expansion?. Journal of Computational Dynamics, v. 12, n. Ja 2025, p. 115-159, 2025Tradução . . Disponível em: https://doi.org/10.3934/jcd.2024028. Acesso em: 06 out. 2025.
    • APA

      Ebrahimi-Fard, K., Mencattini, I., & Quesney, A. T. G. (2025). What is the Magnus expansion? Journal of Computational Dynamics, 12( Ja 2025), 115-159. doi:10.3934/jcd.2024028
    • NLM

      Ebrahimi-Fard K, Mencattini I, Quesney ATG. What is the Magnus expansion? [Internet]. Journal of Computational Dynamics. 2025 ; 12( Ja 2025): 115-159.[citado 2025 out. 06 ] Available from: https://doi.org/10.3934/jcd.2024028
    • Vancouver

      Ebrahimi-Fard K, Mencattini I, Quesney ATG. What is the Magnus expansion? [Internet]. Journal of Computational Dynamics. 2025 ; 12( Ja 2025): 115-159.[citado 2025 out. 06 ] Available from: https://doi.org/10.3934/jcd.2024028
  • Unidade: ICMC

    Assuntos: VARIEDADES SIMPLÉTICAS, FÍSICA MATEMÁTICA, TEORIA ALGÉBRICA DE SISTEMAS

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LUIZ, Murilo do Nascimento. Poisson quasi-Nijenhuis manifolds and Dirac structures: A geometrical approach to deformation and involutive theorems. 2024. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2024. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-04062024-144344/. Acesso em: 06 out. 2025.
    • APA

      Luiz, M. do N. (2024). Poisson quasi-Nijenhuis manifolds and Dirac structures: A geometrical approach to deformation and involutive theorems (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-04062024-144344/
    • NLM

      Luiz M do N. Poisson quasi-Nijenhuis manifolds and Dirac structures: A geometrical approach to deformation and involutive theorems [Internet]. 2024 ;[citado 2025 out. 06 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-04062024-144344/
    • Vancouver

      Luiz M do N. Poisson quasi-Nijenhuis manifolds and Dirac structures: A geometrical approach to deformation and involutive theorems [Internet]. 2024 ;[citado 2025 out. 06 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-04062024-144344/
  • Fonte: Bulletin of the Brazilian Mathematical Society : New Series. Unidade: ICMC

    Assuntos: ÁLGEBRAS DE LIE, FÍSICA MATEMÁTICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LUIZ, Murilo do Nascimento e MENCATTINI, Igor e PEDRONI, Marco. Quasi-Lie bialgebroids, Dirac structures, and deformations of Poisson quasi-Nijenhuis manifolds. Bulletin of the Brazilian Mathematical Society : New Series, v. 55, p. 1-19, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00574-024-00400-z. Acesso em: 06 out. 2025.
    • APA

      Luiz, M. do N., Mencattini, I., & Pedroni, M. (2024). Quasi-Lie bialgebroids, Dirac structures, and deformations of Poisson quasi-Nijenhuis manifolds. Bulletin of the Brazilian Mathematical Society : New Series, 55, 1-19. doi:10.1007/s00574-024-00400-z
    • NLM

      Luiz M do N, Mencattini I, Pedroni M. Quasi-Lie bialgebroids, Dirac structures, and deformations of Poisson quasi-Nijenhuis manifolds [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2024 ; 55 1-19.[citado 2025 out. 06 ] Available from: https://doi.org/10.1007/s00574-024-00400-z
    • Vancouver

      Luiz M do N, Mencattini I, Pedroni M. Quasi-Lie bialgebroids, Dirac structures, and deformations of Poisson quasi-Nijenhuis manifolds [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2024 ; 55 1-19.[citado 2025 out. 06 ] Available from: https://doi.org/10.1007/s00574-024-00400-z
  • Unidade: ICMC

    Assuntos: GRUPOS DE LIE, GRUPOS DE LIE SEMISSIMPLES, ÁLGEBRAS DE LIE SEMISSIMPLES, REPRESENTAÇÃO DE WEIL

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAMOS, Bruno Reis. Tópicos em teoria de Lie. 2024. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2024. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-06082024-143158/. Acesso em: 06 out. 2025.
    • APA

      Ramos, B. R. (2024). Tópicos em teoria de Lie (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-06082024-143158/
    • NLM

      Ramos BR. Tópicos em teoria de Lie [Internet]. 2024 ;[citado 2025 out. 06 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-06082024-143158/
    • Vancouver

      Ramos BR. Tópicos em teoria de Lie [Internet]. 2024 ;[citado 2025 out. 06 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-06082024-143158/
  • Unidade: ICMC

    Assuntos: APROXIMAÇÃO, MEDIDA E INTEGRAÇÃO, ANÁLISE DIOFANTINA, FRAÇÕES CONTÍNUAS

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTAÑEDA, Christian Sanabria. Building bridges between Diophantine approximation, continued fractions and measure theory. 2024. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2024. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-24012025-172202/. Acesso em: 06 out. 2025.
    • APA

      Castañeda, C. S. (2024). Building bridges between Diophantine approximation, continued fractions and measure theory (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-24012025-172202/
    • NLM

      Castañeda CS. Building bridges between Diophantine approximation, continued fractions and measure theory [Internet]. 2024 ;[citado 2025 out. 06 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-24012025-172202/
    • Vancouver

      Castañeda CS. Building bridges between Diophantine approximation, continued fractions and measure theory [Internet]. 2024 ;[citado 2025 out. 06 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-24012025-172202/
  • Unidade: ICMC

    Assuntos: GEOMETRIA DIFERENCIAL, SISTEMAS HAMILTONIANOS, VARIEDADES TOPOLÓGICAS

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTRO, Thales Novelli. Topics on the theory of Frobenius manifolds. 2024. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2024. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-22052024-142742/. Acesso em: 06 out. 2025.
    • APA

      Castro, T. N. (2024). Topics on the theory of Frobenius manifolds (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-22052024-142742/
    • NLM

      Castro TN. Topics on the theory of Frobenius manifolds [Internet]. 2024 ;[citado 2025 out. 06 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-22052024-142742/
    • Vancouver

      Castro TN. Topics on the theory of Frobenius manifolds [Internet]. 2024 ;[citado 2025 out. 06 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-22052024-142742/
  • Fonte: Journal of Geometry and Physics. Unidade: ICMC

    Assuntos: ÁLGEBRAS DE LIE, SISTEMAS HAMILTONIANOS, FÍSICA MATEMÁTICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FALQUI, Gregorio e MENCATTINI, Igor e PEDRONI, Marco. Poisson quasi-Nijenhuis deformations of the canonical PN structure. Journal of Geometry and Physics, v. 186, p. 1-10, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2023.104773. Acesso em: 06 out. 2025.
    • APA

      Falqui, G., Mencattini, I., & Pedroni, M. (2023). Poisson quasi-Nijenhuis deformations of the canonical PN structure. Journal of Geometry and Physics, 186, 1-10. doi:10.1016/j.geomphys.2023.104773
    • NLM

      Falqui G, Mencattini I, Pedroni M. Poisson quasi-Nijenhuis deformations of the canonical PN structure [Internet]. Journal of Geometry and Physics. 2023 ; 186 1-10.[citado 2025 out. 06 ] Available from: https://doi.org/10.1016/j.geomphys.2023.104773
    • Vancouver

      Falqui G, Mencattini I, Pedroni M. Poisson quasi-Nijenhuis deformations of the canonical PN structure [Internet]. Journal of Geometry and Physics. 2023 ; 186 1-10.[citado 2025 out. 06 ] Available from: https://doi.org/10.1016/j.geomphys.2023.104773
  • Fonte: Selecta Mathematica : New Series. Unidade: ICMC

    Assuntos: GEOMETRIA SIMPLÉTICA, TEORIA DOS GRUPOS, SISTEMAS HAMILTONIANOS, SISTEMAS LAGRANGIANOS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARSIE, Alessandro et al. A Dubrovin-Frobenius manifold structure of NLS type on the orbit space of 'B IND N'. Selecta Mathematica : New Series, v. 29, n. 1, p. 1-48, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00029-022-00804-z. Acesso em: 06 out. 2025.
    • APA

      Arsie, A., Lorenzoni, P., Mencattini, I., & Moroni, G. (2023). A Dubrovin-Frobenius manifold structure of NLS type on the orbit space of 'B IND N'. Selecta Mathematica : New Series, 29( 1), 1-48. doi:10.1007/s00029-022-00804-z
    • NLM

      Arsie A, Lorenzoni P, Mencattini I, Moroni G. A Dubrovin-Frobenius manifold structure of NLS type on the orbit space of 'B IND N' [Internet]. Selecta Mathematica : New Series. 2023 ; 29( 1): 1-48.[citado 2025 out. 06 ] Available from: https://doi.org/10.1007/s00029-022-00804-z
    • Vancouver

      Arsie A, Lorenzoni P, Mencattini I, Moroni G. A Dubrovin-Frobenius manifold structure of NLS type on the orbit space of 'B IND N' [Internet]. Selecta Mathematica : New Series. 2023 ; 29( 1): 1-48.[citado 2025 out. 06 ] Available from: https://doi.org/10.1007/s00029-022-00804-z
  • Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SINGULARIDADES, MATRIZES, ANÁLISE ASSINTÓTICA

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PINHEIRO, Carla Mariana da Silva. Integrable Systems and Partition Functions of Random Matrix Models. 2022. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2022. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-17032022-135201/. Acesso em: 06 out. 2025.
    • APA

      Pinheiro, C. M. da S. (2022). Integrable Systems and Partition Functions of Random Matrix Models (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-17032022-135201/
    • NLM

      Pinheiro CM da S. Integrable Systems and Partition Functions of Random Matrix Models [Internet]. 2022 ;[citado 2025 out. 06 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-17032022-135201/
    • Vancouver

      Pinheiro CM da S. Integrable Systems and Partition Functions of Random Matrix Models [Internet]. 2022 ;[citado 2025 out. 06 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-17032022-135201/
  • Fonte: Caderno de resumos. Nome do evento: Simpósio de Matemática para a Graduação - SIM. Unidade: ICMC

    Assuntos: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, FORMAS QUADRÁTICAS, QUATERNIOS

    PrivadoAcesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TONUS, Arthur Garcia. Uma introdução às álgebras de Clifford. 2022, Anais.. São Carlos: ICMC-USP, 2022. Disponível em: https://sites.google.com/usp.br/sim2022/pagina-inicial. Acesso em: 06 out. 2025.
    • APA

      Tonus, A. G. (2022). Uma introdução às álgebras de Clifford. In Caderno de resumos. São Carlos: ICMC-USP. Recuperado de https://sites.google.com/usp.br/sim2022/pagina-inicial
    • NLM

      Tonus AG. Uma introdução às álgebras de Clifford [Internet]. Caderno de resumos. 2022 ;[citado 2025 out. 06 ] Available from: https://sites.google.com/usp.br/sim2022/pagina-inicial
    • Vancouver

      Tonus AG. Uma introdução às álgebras de Clifford [Internet]. Caderno de resumos. 2022 ;[citado 2025 out. 06 ] Available from: https://sites.google.com/usp.br/sim2022/pagina-inicial
  • Unidade: ICMC

    Assuntos: ESPAÇOS DE HILBERT, OPERADORES DE FREDHOLM, ANÁLISE FUNCIONAL

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORELLI, Pedro Augusto da Silva. Tópicos de Análise e Geometria: Operadores de Fredholm e Grassmannianas. 2022. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2022. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-10032022-102115/. Acesso em: 06 out. 2025.
    • APA

      Morelli, P. A. da S. (2022). Tópicos de Análise e Geometria: Operadores de Fredholm e Grassmannianas (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-10032022-102115/
    • NLM

      Morelli PA da S. Tópicos de Análise e Geometria: Operadores de Fredholm e Grassmannianas [Internet]. 2022 ;[citado 2025 out. 06 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-10032022-102115/
    • Vancouver

      Morelli PA da S. Tópicos de Análise e Geometria: Operadores de Fredholm e Grassmannianas [Internet]. 2022 ;[citado 2025 out. 06 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-10032022-102115/
  • Fonte: Communications in Algebra. Unidade: ICMC

    Assuntos: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRAS DE HOPF, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENCATTINI, Igor e QUESNEY, Alexandre Thomas Guillaume. Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion. Communications in Algebra, v. 49, n. 8, p. 3507-3533, 2021Tradução . . Disponível em: https://doi.org/10.1080/00927872.2021.1900212. Acesso em: 06 out. 2025.
    • APA

      Mencattini, I., & Quesney, A. T. G. (2021). Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion. Communications in Algebra, 49( 8), 3507-3533. doi:10.1080/00927872.2021.1900212
    • NLM

      Mencattini I, Quesney ATG. Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion [Internet]. Communications in Algebra. 2021 ; 49( 8): 3507-3533.[citado 2025 out. 06 ] Available from: https://doi.org/10.1080/00927872.2021.1900212
    • Vancouver

      Mencattini I, Quesney ATG. Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion [Internet]. Communications in Algebra. 2021 ; 49( 8): 3507-3533.[citado 2025 out. 06 ] Available from: https://doi.org/10.1080/00927872.2021.1900212
  • Fonte: Resumos. Nome do evento: Simpósio Internacional de Iniciação Científica e Tecnológica da Universidade de São Paulo - SIICUSP. Unidades: ICMC, IFSC

    Assuntos: TEORIA DA REPRESENTAÇÃO, ÁLGEBRAS DE LIE, SISTEMA QUÂNTICO, ÁTOMOS DE HIDROGÊNIO

    Versão PublicadaComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PINTO, Vinícius Pereira e MENCATTINI, Igor. Bases da teoria da representação e aplicações em física. 2021, Anais.. São Paulo: Universidade de São Paulo - USP, 2021. Disponível em: https://repositorio.usp.br/directbitstream/078744ab-4227-4954-8c78-a66ee803cbcf/3050211.pdf. Acesso em: 06 out. 2025.
    • APA

      Pinto, V. P., & Mencattini, I. (2021). Bases da teoria da representação e aplicações em física. In Resumos. São Paulo: Universidade de São Paulo - USP. Recuperado de https://repositorio.usp.br/directbitstream/078744ab-4227-4954-8c78-a66ee803cbcf/3050211.pdf
    • NLM

      Pinto VP, Mencattini I. Bases da teoria da representação e aplicações em física [Internet]. Resumos. 2021 ;[citado 2025 out. 06 ] Available from: https://repositorio.usp.br/directbitstream/078744ab-4227-4954-8c78-a66ee803cbcf/3050211.pdf
    • Vancouver

      Pinto VP, Mencattini I. Bases da teoria da representação e aplicações em física [Internet]. Resumos. 2021 ;[citado 2025 out. 06 ] Available from: https://repositorio.usp.br/directbitstream/078744ab-4227-4954-8c78-a66ee803cbcf/3050211.pdf
  • Fonte: Livro de Resumos. Nome do evento: Semana Integrada do Instituto de Física de São Carlos - SIFSC. Unidades: ICMC, IFSC

    Assuntos: TEORIA DA REPRESENTAÇÃO, ÁLGEBRAS DE LIE, SISTEMA QUÂNTICO, ÁTOMOS DE HIDROGÊNIO

    Versão PublicadaComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PINTO, Vinícius Pereira e MENCATTINI, Igor. Bases da teoria da representação e aplicações em física. 2021, Anais.. São Carlos: Instituto de Física de São Carlos - IFSC, 2021. Disponível em: https://repositorio.usp.br/directbitstream/5e69b3db-f564-4d49-b1c8-a4491dcc1327/3051775.pdf. Acesso em: 06 out. 2025.
    • APA

      Pinto, V. P., & Mencattini, I. (2021). Bases da teoria da representação e aplicações em física. In Livro de Resumos. São Carlos: Instituto de Física de São Carlos - IFSC. Recuperado de https://repositorio.usp.br/directbitstream/5e69b3db-f564-4d49-b1c8-a4491dcc1327/3051775.pdf
    • NLM

      Pinto VP, Mencattini I. Bases da teoria da representação e aplicações em física [Internet]. Livro de Resumos. 2021 ;[citado 2025 out. 06 ] Available from: https://repositorio.usp.br/directbitstream/5e69b3db-f564-4d49-b1c8-a4491dcc1327/3051775.pdf
    • Vancouver

      Pinto VP, Mencattini I. Bases da teoria da representação e aplicações em física [Internet]. Livro de Resumos. 2021 ;[citado 2025 out. 06 ] Available from: https://repositorio.usp.br/directbitstream/5e69b3db-f564-4d49-b1c8-a4491dcc1327/3051775.pdf
  • Fonte: Journal of Algebra. Unidade: ICMC

    Assuntos: ÁLGEBRAS DE HOPF, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS LIVRES, ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENCATTINI, Igor e QUESNEY, Alexandre Thomas Guillaume e SILVA, Pryscilla. Post-symmetric braces and integration of post-Lie algebras. Journal of Algebra, v. 556, p. 547-580, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2020.03.018. Acesso em: 06 out. 2025.
    • APA

      Mencattini, I., Quesney, A. T. G., & Silva, P. (2020). Post-symmetric braces and integration of post-Lie algebras. Journal of Algebra, 556, 547-580. doi:10.1016/j.jalgebra.2020.03.018
    • NLM

      Mencattini I, Quesney ATG, Silva P. Post-symmetric braces and integration of post-Lie algebras [Internet]. Journal of Algebra. 2020 ; 556 547-580.[citado 2025 out. 06 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.03.018
    • Vancouver

      Mencattini I, Quesney ATG, Silva P. Post-symmetric braces and integration of post-Lie algebras [Internet]. Journal of Algebra. 2020 ; 556 547-580.[citado 2025 out. 06 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.03.018
  • Unidade: ICMC

    Assuntos: GEOMETRIA SIMPLÉTICA, ÁLGEBRAS DE LIE, GRUPOS DE LIE, GRUPOIDES

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Pedro Henrique Carvalho. Central extensions and Symplectic Geometry. 2020. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2020. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-19032020-093555/. Acesso em: 06 out. 2025.
    • APA

      Silva, P. H. C. (2020). Central extensions and Symplectic Geometry (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-19032020-093555/
    • NLM

      Silva PHC. Central extensions and Symplectic Geometry [Internet]. 2020 ;[citado 2025 out. 06 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-19032020-093555/
    • Vancouver

      Silva PHC. Central extensions and Symplectic Geometry [Internet]. 2020 ;[citado 2025 out. 06 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-19032020-093555/
  • Fonte: Mathematical Physics, Analysis and Geometry. Unidade: ICMC

    Assuntos: SISTEMAS HAMILTONIANOS, GEOMETRIA SIMPLÉTICA, MECÂNICA HAMILTONIANA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FALQUI, Gregorio et al. Poisson quasi-Nijenhuis manifolds and the Toda system. Mathematical Physics, Analysis and Geometry, v. 23, n. 3, p. Se 2020, 2020Tradução . . Disponível em: https://doi.org/10.1007/s11040-020-09352-4. Acesso em: 06 out. 2025.
    • APA

      Falqui, G., Mencattini, I., Ortenzi, G., & Pedroni, M. (2020). Poisson quasi-Nijenhuis manifolds and the Toda system. Mathematical Physics, Analysis and Geometry, 23( 3), Se 2020. doi:10.1007/s11040-020-09352-4
    • NLM

      Falqui G, Mencattini I, Ortenzi G, Pedroni M. Poisson quasi-Nijenhuis manifolds and the Toda system [Internet]. Mathematical Physics, Analysis and Geometry. 2020 ; 23( 3): Se 2020.[citado 2025 out. 06 ] Available from: https://doi.org/10.1007/s11040-020-09352-4
    • Vancouver

      Falqui G, Mencattini I, Ortenzi G, Pedroni M. Poisson quasi-Nijenhuis manifolds and the Toda system [Internet]. Mathematical Physics, Analysis and Geometry. 2020 ; 23( 3): Se 2020.[citado 2025 out. 06 ] Available from: https://doi.org/10.1007/s11040-020-09352-4
  • Unidade: ICMC

    Assuntos: GRUPOS DE LIE, GRUPOIDES, DISTRIBUIÇÃO DE POISSON, ÁLGEBRAS DE LIE

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LUIZ, Murilo do Nascimento. Topics in Poisson Geometry. 2019. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2019. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-19032020-082507/. Acesso em: 06 out. 2025.
    • APA

      Luiz, M. do N. (2019). Topics in Poisson Geometry (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-19032020-082507/
    • NLM

      Luiz M do N. Topics in Poisson Geometry [Internet]. 2019 ;[citado 2025 out. 06 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-19032020-082507/
    • Vancouver

      Luiz M do N. Topics in Poisson Geometry [Internet]. 2019 ;[citado 2025 out. 06 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-19032020-082507/

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025