Filtros : "ÁLGEBRAS DE LIE" Removidos: "Memorial University of Newfoundland, Canada" "IME-MAT" Limpar

Filtros



Refine with date range


  • Source: Journal of Computational Dynamics. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRAS DE LIE, ÁLGEBRAS DE HOPF, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBRAHIMI-FARD, Kurusch e MENCATTINI, Igor e QUESNEY, Alexandre Thomas Guillaume. What is the Magnus expansion?. Journal of Computational Dynamics, v. 12, n. Ja 2025, p. 115-159, 2025Tradução . . Disponível em: https://doi.org/10.3934/jcd.2024028. Acesso em: 02 nov. 2024.
    • APA

      Ebrahimi-Fard, K., Mencattini, I., & Quesney, A. T. G. (2025). What is the Magnus expansion? Journal of Computational Dynamics, 12( Ja 2025), 115-159. doi:10.3934/jcd.2024028
    • NLM

      Ebrahimi-Fard K, Mencattini I, Quesney ATG. What is the Magnus expansion? [Internet]. Journal of Computational Dynamics. 2025 ; 12( Ja 2025): 115-159.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3934/jcd.2024028
    • Vancouver

      Ebrahimi-Fard K, Mencattini I, Quesney ATG. What is the Magnus expansion? [Internet]. Journal of Computational Dynamics. 2025 ; 12( Ja 2025): 115-159.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3934/jcd.2024028
  • Source: Bulletin of the Brazilian Mathematical Society : New Series. Unidade: ICMC

    Subjects: ÁLGEBRAS DE LIE, FÍSICA MATEMÁTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LUIZ, Murilo do Nascimento e MENCATTINI, Igor e PEDRONI, Marco. Quasi-Lie bialgebroids, Dirac structures, and deformations of Poisson quasi-Nijenhuis manifolds. Bulletin of the Brazilian Mathematical Society : New Series, v. 55, p. 1-19, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00574-024-00400-z. Acesso em: 02 nov. 2024.
    • APA

      Luiz, M. do N., Mencattini, I., & Pedroni, M. (2024). Quasi-Lie bialgebroids, Dirac structures, and deformations of Poisson quasi-Nijenhuis manifolds. Bulletin of the Brazilian Mathematical Society : New Series, 55, 1-19. doi:10.1007/s00574-024-00400-z
    • NLM

      Luiz M do N, Mencattini I, Pedroni M. Quasi-Lie bialgebroids, Dirac structures, and deformations of Poisson quasi-Nijenhuis manifolds [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2024 ; 55 1-19.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s00574-024-00400-z
    • Vancouver

      Luiz M do N, Mencattini I, Pedroni M. Quasi-Lie bialgebroids, Dirac structures, and deformations of Poisson quasi-Nijenhuis manifolds [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2024 ; 55 1-19.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s00574-024-00400-z
  • Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, TEORIA DA REPRESENTAÇÃO

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RUELA, Valéria Maria. Módulos de Harish-Chandra simples sobre álgebras de Lie afim. 2024. Dissertação (Mestrado) – Universidade de São Paulo, São Paulo, 2024. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-17092024-195317/. Acesso em: 02 nov. 2024.
    • APA

      Ruela, V. M. (2024). Módulos de Harish-Chandra simples sobre álgebras de Lie afim (Dissertação (Mestrado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-17092024-195317/
    • NLM

      Ruela VM. Módulos de Harish-Chandra simples sobre álgebras de Lie afim [Internet]. 2024 ;[citado 2024 nov. 02 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-17092024-195317/
    • Vancouver

      Ruela VM. Módulos de Harish-Chandra simples sobre álgebras de Lie afim [Internet]. 2024 ;[citado 2024 nov. 02 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-17092024-195317/
  • Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Fernando Júnior Soares dos. Representações de álgebras de Kac-Moody. 2024. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2024. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-15072024-134246/. Acesso em: 02 nov. 2024.
    • APA

      Santos, F. J. S. dos. (2024). Representações de álgebras de Kac-Moody (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-15072024-134246/
    • NLM

      Santos FJS dos. Representações de álgebras de Kac-Moody [Internet]. 2024 ;[citado 2024 nov. 02 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-15072024-134246/
    • Vancouver

      Santos FJS dos. Representações de álgebras de Kac-Moody [Internet]. 2024 ;[citado 2024 nov. 02 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-15072024-134246/
  • Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, GEOMETRIA SIMPLÉTICA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, Eduardo de Carvalho. Geometria 2-plética, algebroides de Courant, e simetrias infinitesimais de S¹-bundle gerbes. 2024. Dissertação (Mestrado) – Universidade de São Paulo, São Paulo, 2024. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-25042024-191027/. Acesso em: 02 nov. 2024.
    • APA

      Andrade, E. de C. (2024). Geometria 2-plética, algebroides de Courant, e simetrias infinitesimais de S¹-bundle gerbes (Dissertação (Mestrado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-25042024-191027/
    • NLM

      Andrade E de C. Geometria 2-plética, algebroides de Courant, e simetrias infinitesimais de S¹-bundle gerbes [Internet]. 2024 ;[citado 2024 nov. 02 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-25042024-191027/
    • Vancouver

      Andrade E de C. Geometria 2-plética, algebroides de Courant, e simetrias infinitesimais de S¹-bundle gerbes [Internet]. 2024 ;[citado 2024 nov. 02 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-25042024-191027/
  • Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROCHA, Henrique de Oliveira. Representations of Lie algebras of vector fields on algebraic varieties and supervarieties. 2024. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2024. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-12072024-142540/. Acesso em: 02 nov. 2024.
    • APA

      Rocha, H. de O. (2024). Representations of Lie algebras of vector fields on algebraic varieties and supervarieties (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-12072024-142540/
    • NLM

      Rocha H de O. Representations of Lie algebras of vector fields on algebraic varieties and supervarieties [Internet]. 2024 ;[citado 2024 nov. 02 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-12072024-142540/
    • Vancouver

      Rocha H de O. Representations of Lie algebras of vector fields on algebraic varieties and supervarieties [Internet]. 2024 ;[citado 2024 nov. 02 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-12072024-142540/
  • Unidade: IME

    Subjects: GRUPOIDES, ÁLGEBRAS DE LIE, GRUPOS DE LIE

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUSHIMI, Luiz Felipe Villar. Cartan structure groupoids and algebroids. 2024. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2024. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-07102024-154113/. Acesso em: 02 nov. 2024.
    • APA

      Fushimi, L. F. V. (2024). Cartan structure groupoids and algebroids (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-07102024-154113/
    • NLM

      Fushimi LFV. Cartan structure groupoids and algebroids [Internet]. 2024 ;[citado 2024 nov. 02 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-07102024-154113/
    • Vancouver

      Fushimi LFV. Cartan structure groupoids and algebroids [Internet]. 2024 ;[citado 2024 nov. 02 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-07102024-154113/
  • Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, André Silva de. Módulos de Wakimoto Imaginários generalizados. 2023. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2023. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-27022024-190000/. Acesso em: 02 nov. 2024.
    • APA

      Oliveira, A. S. de. (2023). Módulos de Wakimoto Imaginários generalizados (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-27022024-190000/
    • NLM

      Oliveira AS de. Módulos de Wakimoto Imaginários generalizados [Internet]. 2023 ;[citado 2024 nov. 02 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-27022024-190000/
    • Vancouver

      Oliveira AS de. Módulos de Wakimoto Imaginários generalizados [Internet]. 2023 ;[citado 2024 nov. 02 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-27022024-190000/
  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: ÁLGEBRAS DE LIE, SISTEMAS HAMILTONIANOS, FÍSICA MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FALQUI, Gregorio e MENCATTINI, Igor e PEDRONI, Marco. Poisson quasi-Nijenhuis deformations of the canonical PN structure. Journal of Geometry and Physics, v. 186, p. 1-10, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2023.104773. Acesso em: 02 nov. 2024.
    • APA

      Falqui, G., Mencattini, I., & Pedroni, M. (2023). Poisson quasi-Nijenhuis deformations of the canonical PN structure. Journal of Geometry and Physics, 186, 1-10. doi:10.1016/j.geomphys.2023.104773
    • NLM

      Falqui G, Mencattini I, Pedroni M. Poisson quasi-Nijenhuis deformations of the canonical PN structure [Internet]. Journal of Geometry and Physics. 2023 ; 186 1-10.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.geomphys.2023.104773
    • Vancouver

      Falqui G, Mencattini I, Pedroni M. Poisson quasi-Nijenhuis deformations of the canonical PN structure [Internet]. Journal of Geometry and Physics. 2023 ; 186 1-10.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.geomphys.2023.104773
  • Source: Livro de Resumos. Conference titles: Semana Integrada do Instituto de Física de São Carlos - SIFSC. Unidade: IFSC

    Subjects: ALGORITMOS, ÁLGEBRAS DE LIE, COMPUTAÇÃO QUÂNTICA, APRENDIZADO COMPUTACIONAL

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORRER, Guilherme Ilário e PINTO, Diogo de Oliveira Soares. Algoritmos quânticos variacionais e o aprendizado de máquina quântico geométrico. 2022, Anais.. São Carlos: Instituto de Física de São Carlos - IFSC, 2022. Disponível em: https://repositorio.usp.br/directbitstream/80b9a9fd-1a4f-4452-a632-faf197952d0c/3119852.pdf. Acesso em: 02 nov. 2024.
    • APA

      Correr, G. I., & Pinto, D. de O. S. (2022). Algoritmos quânticos variacionais e o aprendizado de máquina quântico geométrico. In Livro de Resumos. São Carlos: Instituto de Física de São Carlos - IFSC. Recuperado de https://repositorio.usp.br/directbitstream/80b9a9fd-1a4f-4452-a632-faf197952d0c/3119852.pdf
    • NLM

      Correr GI, Pinto D de OS. Algoritmos quânticos variacionais e o aprendizado de máquina quântico geométrico [Internet]. Livro de Resumos. 2022 ;[citado 2024 nov. 02 ] Available from: https://repositorio.usp.br/directbitstream/80b9a9fd-1a4f-4452-a632-faf197952d0c/3119852.pdf
    • Vancouver

      Correr GI, Pinto D de OS. Algoritmos quânticos variacionais e o aprendizado de máquina quântico geométrico [Internet]. Livro de Resumos. 2022 ;[citado 2024 nov. 02 ] Available from: https://repositorio.usp.br/directbitstream/80b9a9fd-1a4f-4452-a632-faf197952d0c/3119852.pdf
  • Source: Communications in Algebra. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRAS DE HOPF, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENCATTINI, Igor e QUESNEY, Alexandre Thomas Guillaume. Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion. Communications in Algebra, v. 49, n. 8, p. 3507-3533, 2021Tradução . . Disponível em: https://doi.org/10.1080/00927872.2021.1900212. Acesso em: 02 nov. 2024.
    • APA

      Mencattini, I., & Quesney, A. T. G. (2021). Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion. Communications in Algebra, 49( 8), 3507-3533. doi:10.1080/00927872.2021.1900212
    • NLM

      Mencattini I, Quesney ATG. Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion [Internet]. Communications in Algebra. 2021 ; 49( 8): 3507-3533.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1080/00927872.2021.1900212
    • Vancouver

      Mencattini I, Quesney ATG. Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion [Internet]. Communications in Algebra. 2021 ; 49( 8): 3507-3533.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1080/00927872.2021.1900212
  • Source: Livro de Resumos. Conference titles: Semana Integrada do Instituto de Física de São Carlos - SIFSC. Unidades: ICMC, IFSC

    Subjects: TEORIA DA REPRESENTAÇÃO, ÁLGEBRAS DE LIE, SISTEMA QUÂNTICO, ÁTOMOS DE HIDROGÊNIO

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PINTO, Vinícius Pereira e MENCATTINI, Igor. Bases da teoria da representação e aplicações em física. 2021, Anais.. São Carlos: Instituto de Física de São Carlos - IFSC, 2021. Disponível em: https://repositorio.usp.br/directbitstream/5e69b3db-f564-4d49-b1c8-a4491dcc1327/3051775.pdf. Acesso em: 02 nov. 2024.
    • APA

      Pinto, V. P., & Mencattini, I. (2021). Bases da teoria da representação e aplicações em física. In Livro de Resumos. São Carlos: Instituto de Física de São Carlos - IFSC. Recuperado de https://repositorio.usp.br/directbitstream/5e69b3db-f564-4d49-b1c8-a4491dcc1327/3051775.pdf
    • NLM

      Pinto VP, Mencattini I. Bases da teoria da representação e aplicações em física [Internet]. Livro de Resumos. 2021 ;[citado 2024 nov. 02 ] Available from: https://repositorio.usp.br/directbitstream/5e69b3db-f564-4d49-b1c8-a4491dcc1327/3051775.pdf
    • Vancouver

      Pinto VP, Mencattini I. Bases da teoria da representação e aplicações em física [Internet]. Livro de Resumos. 2021 ;[citado 2024 nov. 02 ] Available from: https://repositorio.usp.br/directbitstream/5e69b3db-f564-4d49-b1c8-a4491dcc1327/3051775.pdf
  • Source: Resumos. Conference titles: Simpósio Internacional de Iniciação Científica e Tecnológica da Universidade de São Paulo - SIICUSP. Unidades: ICMC, IFSC

    Subjects: TEORIA DA REPRESENTAÇÃO, ÁLGEBRAS DE LIE, SISTEMA QUÂNTICO, ÁTOMOS DE HIDROGÊNIO

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PINTO, Vinícius Pereira e MENCATTINI, Igor. Bases da teoria da representação e aplicações em física. 2021, Anais.. São Paulo: Universidade de São Paulo - USP, 2021. Disponível em: https://repositorio.usp.br/directbitstream/078744ab-4227-4954-8c78-a66ee803cbcf/3050211.pdf. Acesso em: 02 nov. 2024.
    • APA

      Pinto, V. P., & Mencattini, I. (2021). Bases da teoria da representação e aplicações em física. In Resumos. São Paulo: Universidade de São Paulo - USP. Recuperado de https://repositorio.usp.br/directbitstream/078744ab-4227-4954-8c78-a66ee803cbcf/3050211.pdf
    • NLM

      Pinto VP, Mencattini I. Bases da teoria da representação e aplicações em física [Internet]. Resumos. 2021 ;[citado 2024 nov. 02 ] Available from: https://repositorio.usp.br/directbitstream/078744ab-4227-4954-8c78-a66ee803cbcf/3050211.pdf
    • Vancouver

      Pinto VP, Mencattini I. Bases da teoria da representação e aplicações em física [Internet]. Resumos. 2021 ;[citado 2024 nov. 02 ] Available from: https://repositorio.usp.br/directbitstream/078744ab-4227-4954-8c78-a66ee803cbcf/3050211.pdf
  • Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, TEORIA DA REPRESENTAÇÃO

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZAIDAN, André Eduardo. Reductions in representation theory of Lie algebras of vector fields. 2020. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2020. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-09062020-192819/. Acesso em: 02 nov. 2024.
    • APA

      Zaidan, A. E. (2020). Reductions in representation theory of Lie algebras of vector fields (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-09062020-192819/
    • NLM

      Zaidan AE. Reductions in representation theory of Lie algebras of vector fields [Internet]. 2020 ;[citado 2024 nov. 02 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-09062020-192819/
    • Vancouver

      Zaidan AE. Reductions in representation theory of Lie algebras of vector fields [Internet]. 2020 ;[citado 2024 nov. 02 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-09062020-192819/
  • Source: Journal of Algebra. Unidade: ICMC

    Subjects: ÁLGEBRAS DE HOPF, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS LIVRES, ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENCATTINI, Igor e QUESNEY, Alexandre Thomas Guillaume e SILVA, Pryscilla. Post-symmetric braces and integration of post-Lie algebras. Journal of Algebra, v. 556, p. 547-580, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2020.03.018. Acesso em: 02 nov. 2024.
    • APA

      Mencattini, I., Quesney, A. T. G., & Silva, P. (2020). Post-symmetric braces and integration of post-Lie algebras. Journal of Algebra, 556, 547-580. doi:10.1016/j.jalgebra.2020.03.018
    • NLM

      Mencattini I, Quesney ATG, Silva P. Post-symmetric braces and integration of post-Lie algebras [Internet]. Journal of Algebra. 2020 ; 556 547-580.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.03.018
    • Vancouver

      Mencattini I, Quesney ATG, Silva P. Post-symmetric braces and integration of post-Lie algebras [Internet]. Journal of Algebra. 2020 ; 556 547-580.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.03.018
  • Unidade: ICMC

    Subjects: GEOMETRIA SIMPLÉTICA, ÁLGEBRAS DE LIE, GRUPOS DE LIE, GRUPOIDES

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Pedro Henrique Carvalho. Central extensions and Symplectic Geometry. 2020. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2020. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-19032020-093555/. Acesso em: 02 nov. 2024.
    • APA

      Silva, P. H. C. (2020). Central extensions and Symplectic Geometry (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-19032020-093555/
    • NLM

      Silva PHC. Central extensions and Symplectic Geometry [Internet]. 2020 ;[citado 2024 nov. 02 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-19032020-093555/
    • Vancouver

      Silva PHC. Central extensions and Symplectic Geometry [Internet]. 2020 ;[citado 2024 nov. 02 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-19032020-093555/
  • Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, ESPAÇOS LOCALMENTE CONVEXOS, GRUPOS DE LIE, OPERADORES PSEUDODIFERENCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CABRAL, Rodrigo Augusto Higo Mafra. Lie algebras of linear operators on locally convex spaces. 2019. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2019. Disponível em: http://www.teses.usp.br/teses/disponiveis/45/45132/tde-10102019-031720/. Acesso em: 02 nov. 2024.
    • APA

      Cabral, R. A. H. M. (2019). Lie algebras of linear operators on locally convex spaces (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de http://www.teses.usp.br/teses/disponiveis/45/45132/tde-10102019-031720/
    • NLM

      Cabral RAHM. Lie algebras of linear operators on locally convex spaces [Internet]. 2019 ;[citado 2024 nov. 02 ] Available from: http://www.teses.usp.br/teses/disponiveis/45/45132/tde-10102019-031720/
    • Vancouver

      Cabral RAHM. Lie algebras of linear operators on locally convex spaces [Internet]. 2019 ;[citado 2024 nov. 02 ] Available from: http://www.teses.usp.br/teses/disponiveis/45/45132/tde-10102019-031720/
  • Unidade: ICMC

    Subjects: GRUPOS DE LIE, GRUPOIDES, DISTRIBUIÇÃO DE POISSON, ÁLGEBRAS DE LIE

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LUIZ, Murilo do Nascimento. Topics in Poisson Geometry. 2019. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2019. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-19032020-082507/. Acesso em: 02 nov. 2024.
    • APA

      Luiz, M. do N. (2019). Topics in Poisson Geometry (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-19032020-082507/
    • NLM

      Luiz M do N. Topics in Poisson Geometry [Internet]. 2019 ;[citado 2024 nov. 02 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-19032020-082507/
    • Vancouver

      Luiz M do N. Topics in Poisson Geometry [Internet]. 2019 ;[citado 2024 nov. 02 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-19032020-082507/
  • Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARDOSO, Maria Clara. Subálgebras de Mischenko-Fomenko de álgebras envolventes de álgebras de Lie simples. 2019. Dissertação (Mestrado) – Universidade de São Paulo, São Paulo, 2019. Disponível em: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-10092019-232148/. Acesso em: 02 nov. 2024.
    • APA

      Cardoso, M. C. (2019). Subálgebras de Mischenko-Fomenko de álgebras envolventes de álgebras de Lie simples (Dissertação (Mestrado). Universidade de São Paulo, São Paulo. Recuperado de http://www.teses.usp.br/teses/disponiveis/45/45131/tde-10092019-232148/
    • NLM

      Cardoso MC. Subálgebras de Mischenko-Fomenko de álgebras envolventes de álgebras de Lie simples [Internet]. 2019 ;[citado 2024 nov. 02 ] Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-10092019-232148/
    • Vancouver

      Cardoso MC. Subálgebras de Mischenko-Fomenko de álgebras envolventes de álgebras de Lie simples [Internet]. 2019 ;[citado 2024 nov. 02 ] Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-10092019-232148/
  • Unidade: ICMC

    Subjects: ÁLGEBRAS DE LIE, ÁLGEBRA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Pryscilla dos Santos Ferreira. A post-Lie operad of rooted trees. 2018. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2018. Disponível em: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10102018-164231/. Acesso em: 02 nov. 2024.
    • APA

      Silva, P. dos S. F. (2018). A post-Lie operad of rooted trees (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10102018-164231/
    • NLM

      Silva P dos SF. A post-Lie operad of rooted trees [Internet]. 2018 ;[citado 2024 nov. 02 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10102018-164231/
    • Vancouver

      Silva P dos SF. A post-Lie operad of rooted trees [Internet]. 2018 ;[citado 2024 nov. 02 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10102018-164231/

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024