Hybrid reciprocal lattice: application to layer stress determination in 'GA''AL''N'/'GA''N'(0001) systems with patterned substrates (2016)
- Authors:
- Autor USP: MORELHAO, SERGIO LUIZ - IF
- Unidade: IF
- DOI: 10.1038/srep28128
- Subjects: SEMICONDUTORES; RAIOS X
- Language: Inglês
- Imprenta:
- Source:
- Título do periódico: Journal of Applied Crystallography
- Volume/Número/Paginação/Ano: v. 49, n. 3, p. 798-805, jun. 2016
- Este periódico é de acesso aberto
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: gold
- Licença: cc-by
-
ABNT
DOMAGALA, Jaroslaw Z.; SARZYNSKI, Marcin; MAZDZIARZ, Marcin; et al. Hybrid reciprocal lattice: application to layer stress determination in 'GA''AL''N'/'GA''N'(0001) systems with patterned substrates. Journal of Applied Crystallography, Chester, v. 49, n. ju 2016, p. 798-805, 2016. DOI: 10.1038/srep28128. -
APA
Domagala, J. Z., Sarzynski, M., Mazdziarz, M., Dluzewski, P., Leszczynski, M., & Morelhao, S. L. (2016). Hybrid reciprocal lattice: application to layer stress determination in 'GA''AL''N'/'GA''N'(0001) systems with patterned substrates. Journal of Applied Crystallography, 49( ju 2016), 798-805. doi:10.1038/srep28128 -
NLM
Domagala JZ, Sarzynski M, Mazdziarz M, Dluzewski P, Leszczynski M, Morelhao SL. Hybrid reciprocal lattice: application to layer stress determination in 'GA''AL''N'/'GA''N'(0001) systems with patterned substrates. Journal of Applied Crystallography. 2016 ; 49( ju 2016): 798-805. -
Vancouver
Domagala JZ, Sarzynski M, Mazdziarz M, Dluzewski P, Leszczynski M, Morelhao SL. Hybrid reciprocal lattice: application to layer stress determination in 'GA''AL''N'/'GA''N'(0001) systems with patterned substrates. Journal of Applied Crystallography. 2016 ; 49( ju 2016): 798-805. - Enhanced triple-fase measurement at 'ômicron'/2-scattering geometry
- Invariant phase determination by genetic algorithm
- Structure refinement of in pure and doped single crystals by synchrotron X-ray Renninger scanning
- Hybrid reciprocal lattice: application to layer stress appointment in 'GA''AL''N'/'GA''N'(0001) systems with patterned substrates
- An x-ray diffractometer for accurate structural invariant phase determination
- Characterization of erbium oxide sol-gel films and devices by grazing incidence X-ray reflectivity
- Enhanced X-ray phase determination by three-beam diffraction
- General recursive solution for one-dimensional quantum potentials: a simple tool for applied physics
- High-resolution synchrotron radiation Renninger scan to examine hybrid reflections in InGaP/GaAs(001)
- An x-ray topography study of the dendritic web silicon growth process
Informações sobre o DOI: 10.1038/srep28128 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
Referências citadas na obra
Katsube, T. & Williamson, M. Effects of diagenesis on shale nano-pore structure and implications for sealing capacity. Clay Miner. 29, 451–472 (1994). |
---|
Hansen, E. W., Stocker, M. & Schmidt, R. Low-temperature phase transition of water confined in mesopores probed by nmr. influence on pore size distribution. J. Phys. Chem. 100, 2195–2200 (1996). |
Liu, L., Chen, S.-H., Faraone, A., Yen, C.-W. & Mou, C.-Y. Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water. Phys. Rev. Lett. 95, 117802 (2005). |
Bonnaud, P. A., Coasne, B. & Pellenq, R. J.-M. Molecular simulation of water confined in nanoporous silica. J. Phys.: Condens. Matter 22, 284110 (2010). |
Du, Z. & de Leeuw, N. H. Molecular dynamics simulations of hydration, dissolution and nucleation processes at the α-quartz (0001) surface in liquid water. Dalton Trans. 22, 2623–2634 (2006). |
Bourg, I. C. & Steefel, C. I. Molecular dynamics simulations of water structure and diffusion in silica nanopores. J. Phys. Chem. C 116, 11556–11564 (2012). |
Botan, A., Rotenberg, B., Marry, V., Turq, P. & Noetinger, B. Hydrodynamics in clay nanopores. J. Phys. Chem. C 115, 16109–16115 (2011). |
Zhu, C., Li, H. & Meng, S. Transport behavior of water molecules through two-dimensional nanopores. J. Chem. Phys. 141, 18C528 (2014). |
Xu, B., Li, Y., Park, T. & Chen, X. Effect of wall roughness on fluid transport resistance in nanopores. J. Chem. Phys. 135, 144703 (2011). |
Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). |
Cruz-Chu, E. R., Aksimentiev, A. & Schulten, K. Water/silica force field for simulating nanodevices. J. Phys. Chem. B 110, 21497–21508 (2006). |
Brooks, B. R. et al. Charmm: The biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009). |
Alejandre, J., Chapela, G. A., Bresme, F. & Hansen, J.-P. The short range anion-h interaction is the driving force for crystal formation of ions in water. J. Chem. Phys. 130, 174505 (2009). |
Lorentz, H. A. Ueber die anwendung des satzes vom virial in der kinetischen theorie der gase. Ann. Phys. 248, 127–136 (1881). |
Berthelot, D. Sur le mélange des gaz. C. R. Hebd. Seances Acad. Sci. 126, 1703–1855 (1898). |
Thompson, A. P., Plimpton, S. J. & Mattson, W. General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions. J. Chem. Phys. 131, 154107 (2009). |
Hockney, R. W. J. E. Computer Simulation using Particles (Adam Hilger, New York, 1989). |
Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids (Oxford University Press, 1987). |
Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984). |
Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985). |
Andersen, H. C. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72, 2384–2393 (1980). |
Geun Kim, B., Sik Lee, J., Han, M. & Park, S. A molecular dynamics study on stability and thermophysical properties of nanoscale liquid threads. Nanoscale Microscale Thermophys. Eng. 10, 283–304 (2006). |
Wang, X. & Zhu, R. A method to calculate the surface tension of a cylindrical droplet. Eur. J. Phys. 31, 79–87 (2010). |
Irving, J. H. & Kirkwood, J. G. The statistical mechanical theory of transport processes. iv. the equations of hydrodynamics. J. Chem. Phys. 18, 817–829 (1950). |
de Lara, L. S., Michelon, M. F., Metin, C. O., Nguyen, Q. P. & Miranda, C. R. Interface tension of silica hydroxylated nanoparticle with brine: A combined experimental and molecular dynamics study. J. Chem. Phys. 136, 164702 (2012). |
Makimura, D. et al. Combined modeling and experimental studies of hydroxylated silica nanoparticles. J. Mater. Sci. 45, 5084–5088 (2010). |
Laskowski, J. & Kitchener, J. The hydrophilic—hydrophobic transition on silica. J. Colloid Interface Sci. 29, 670–679 (1969). |
Zhuravlev, L. The surface chemistry of amorphous silica. zhuravlev model. Colloids Surf., A 173, 1–38 (2000). |
de Lara, L. S., Michelon, M. F. & Miranda, C. R. Molecular dynamics studies of fluid/oil interfaces for improved oil recovery processes. J. Phys. Chem. B 116, 14667–14676 (2012). |
Kunieda, M. et al. Self-accumulation of aromatics at the oil/water interface through weak hydrogen bonding. J. Am. Chem. Soc. 132, 18281–18286 (2010). |
Chiavazzo, E., Fasano, M., Asinari, P. & Decuzzi, P. Scaling behaviour for the water transport in nanoconfined geometries. Nat. Commun. 5, 4565 (2014). |
Fasano, M., Chiavazzo, E. & Asinari, P. Water transport control in carbon nanotube arrays. Nanoscale Research Letters 9, 1–8 (2014). |
González, M. A. & Abascal, J. L. F. The shear viscosity of rigid water models. J. Chem. Phys. 132, 096101 (2010). |
Harris, K. R. & Woolf, L. A. Temperature and volume dependence of the viscosity of water and heavy water at low temperatures. J. Chem. Eng. Data 49, 1064–1069 (2004). |