Filtros : "Financiamento FAPESP" "Indexado no zbMATH Open" "Brasil" Limpar

Filtros



Refine with date range


  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES, SISTEMAS DISSIPATIVO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO, Vinícius Tavares e LÓPEZ-LÁZARO, Heraclio e TAKAESSU JUNIOR, Carlos Roberto. Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations. Communications in Nonlinear Science and Numerical Simulation, v. 152, n. Ja 2026, p. 1-12, 2026Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2025.109198. Acesso em: 08 out. 2025.
    • APA

      Azevedo, V. T., López-Lázaro, H., & Takaessu Junior, C. R. (2026). Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations. Communications in Nonlinear Science and Numerical Simulation, 152( Ja 2026), 1-12. doi:10.1016/j.cnsns.2025.109198
    • NLM

      Azevedo VT, López-Lázaro H, Takaessu Junior CR. Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-12.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109198
    • Vancouver

      Azevedo VT, López-Lázaro H, Takaessu Junior CR. Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-12.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109198
  • Source: International Journal for Numerical Methods in Engineering. Unidade: ICMC

    Subjects: EQUAÇÕES DE NAVIER-STOKES, MÉTODO DOS ELEMENTOS FINITOS, MECÂNICA DOS FLUÍDOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PUGA, Carlos Henrique Chama et al. A stable mixed finite element method for the simulation of stokes flow using divergence balanced H(Div)-L2 pair of approximation spaces. International Journal for Numerical Methods in Engineering, v. 126, n. Ja 2025, p. 1-24, 2025Tradução . . Disponível em: https://doi.org/10.1002/nme.7629. Acesso em: 08 out. 2025.
    • APA

      Puga, C. H. C., Avancini, G., Shauer, N., Carvalho, P. G. S., & Devloo, P. R. B. (2025). A stable mixed finite element method for the simulation of stokes flow using divergence balanced H(Div)-L2 pair of approximation spaces. International Journal for Numerical Methods in Engineering, 126( Ja 2025), 1-24. doi:10.1002/nme.7629
    • NLM

      Puga CHC, Avancini G, Shauer N, Carvalho PGS, Devloo PRB. A stable mixed finite element method for the simulation of stokes flow using divergence balanced H(Div)-L2 pair of approximation spaces [Internet]. International Journal for Numerical Methods in Engineering. 2025 ; 126( Ja 2025): 1-24.[citado 2025 out. 08 ] Available from: https://doi.org/10.1002/nme.7629
    • Vancouver

      Puga CHC, Avancini G, Shauer N, Carvalho PGS, Devloo PRB. A stable mixed finite element method for the simulation of stokes flow using divergence balanced H(Div)-L2 pair of approximation spaces [Internet]. International Journal for Numerical Methods in Engineering. 2025 ; 126( Ja 2025): 1-24.[citado 2025 out. 08 ] Available from: https://doi.org/10.1002/nme.7629
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS QUASE LINEARES, SISTEMAS QUASE LINEARES, ATRATORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e SIMSEN, Jacson e SIMSEN, Mariza Stefanello. Attractors for parabolic problems with p(x)-Laplacian: bounds, continuity of the flow and robustness. Journal of Mathematical Analysis and Applications, v. 547, n. 1, p. 1-30, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2025.129284. Acesso em: 08 out. 2025.
    • APA

      Carvalho, A. N. de, Simsen, J., & Simsen, M. S. (2025). Attractors for parabolic problems with p(x)-Laplacian: bounds, continuity of the flow and robustness. Journal of Mathematical Analysis and Applications, 547( 1), 1-30. doi:10.1016/j.jmaa.2025.129284
    • NLM

      Carvalho AN de, Simsen J, Simsen MS. Attractors for parabolic problems with p(x)-Laplacian: bounds, continuity of the flow and robustness [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 547( 1): 1-30.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129284
    • Vancouver

      Carvalho AN de, Simsen J, Simsen MS. Attractors for parabolic problems with p(x)-Laplacian: bounds, continuity of the flow and robustness [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 547( 1): 1-30.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129284
  • Source: Journal of Evolution Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DE NAVIER-STOKES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES, MECÂNICA DOS FLUÍDOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. Weak global attractor for the 3D-Navier-Stokes equations via the globally modified Navier-Stokes equations. Journal of Evolution Equations, v. 25, n. 1, p. 1-29, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00028-024-01039-5. Acesso em: 08 out. 2025.
    • APA

      Bortolan, M. C., Carvalho, A. N. de, Marín-Rubio, P., & Valero, J. (2025). Weak global attractor for the 3D-Navier-Stokes equations via the globally modified Navier-Stokes equations. Journal of Evolution Equations, 25( 1), 1-29. doi:10.1007/s00028-024-01039-5
    • NLM

      Bortolan MC, Carvalho AN de, Marín-Rubio P, Valero J. Weak global attractor for the 3D-Navier-Stokes equations via the globally modified Navier-Stokes equations [Internet]. Journal of Evolution Equations. 2025 ; 25( 1): 1-29.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00028-024-01039-5
    • Vancouver

      Bortolan MC, Carvalho AN de, Marín-Rubio P, Valero J. Weak global attractor for the 3D-Navier-Stokes equations via the globally modified Navier-Stokes equations [Internet]. Journal of Evolution Equations. 2025 ; 25( 1): 1-29.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00028-024-01039-5
  • Source: Letters in Mathematical Physics. Unidade: ICMC

    Subjects: SISTEMAS HAMILTONIANOS, GEOMETRIA SIMPLÉTICA, MECÂNICA HAMILTONIANA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHUÑO VIZARRETA, Eber Daniel et al. Poisson quasi-Nijenhuis manifolds, closed Toda lattices, and generalized recursion relations. Letters in Mathematical Physics, v. 115, n. 4, p. 1-22, 2025Tradução . . Disponível em: https://doi.org/10.1007/s11005-025-01970-9. Acesso em: 08 out. 2025.
    • APA

      Chuño Vizarreta, E. D., Falqui, G., Mencattini, I., & Pedroni, M. (2025). Poisson quasi-Nijenhuis manifolds, closed Toda lattices, and generalized recursion relations. Letters in Mathematical Physics, 115( 4), 1-22. doi:10.1007/s11005-025-01970-9
    • NLM

      Chuño Vizarreta ED, Falqui G, Mencattini I, Pedroni M. Poisson quasi-Nijenhuis manifolds, closed Toda lattices, and generalized recursion relations [Internet]. Letters in Mathematical Physics. 2025 ; 115( 4): 1-22.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s11005-025-01970-9
    • Vancouver

      Chuño Vizarreta ED, Falqui G, Mencattini I, Pedroni M. Poisson quasi-Nijenhuis manifolds, closed Toda lattices, and generalized recursion relations [Internet]. Letters in Mathematical Physics. 2025 ; 115( 4): 1-22.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s11005-025-01970-9
  • Source: Physica D : Nonlinear Phenomena. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SOLUÇÕES PERIÓDICAS, TEORIA DA BIFURCAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRAUN, Francisco e CRUZ, Leonardo Pereira Costa da e TORREGROSA, Joan. Local and global analysis of the displacement map for some near integrable systems. Physica D : Nonlinear Phenomena, v. 483, p. 1-11, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.physd.2025.134932. Acesso em: 08 out. 2025.
    • APA

      Braun, F., Cruz, L. P. C. da, & Torregrosa, J. (2025). Local and global analysis of the displacement map for some near integrable systems. Physica D : Nonlinear Phenomena, 483, 1-11. doi:10.1016/j.physd.2025.134932
    • NLM

      Braun F, Cruz LPC da, Torregrosa J. Local and global analysis of the displacement map for some near integrable systems [Internet]. Physica D : Nonlinear Phenomena. 2025 ; 483 1-11.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.physd.2025.134932
    • Vancouver

      Braun F, Cruz LPC da, Torregrosa J. Local and global analysis of the displacement map for some near integrable systems [Internet]. Physica D : Nonlinear Phenomena. 2025 ; 483 1-11.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.physd.2025.134932
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SISTEMAS DISSIPATIVO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. A unified theory for inertial manifolds, saddle point property and exponential dichotomy. Journal of Differential Equations, v. 416, n. Ja 2025, p. 1462-1495, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.10.029. Acesso em: 08 out. 2025.
    • APA

      Carvalho, A. N. de, Lappicy, P., Moreira, E. M., & Oliveira-Sousa, A. do N. (2025). A unified theory for inertial manifolds, saddle point property and exponential dichotomy. Journal of Differential Equations, 416( Ja 2025), 1462-1495. doi:10.1016/j.jde.2024.10.029
    • NLM

      Carvalho AN de, Lappicy P, Moreira EM, Oliveira-Sousa A do N. A unified theory for inertial manifolds, saddle point property and exponential dichotomy [Internet]. Journal of Differential Equations. 2025 ; 416( Ja 2025): 1462-1495.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.10.029
    • Vancouver

      Carvalho AN de, Lappicy P, Moreira EM, Oliveira-Sousa A do N. A unified theory for inertial manifolds, saddle point property and exponential dichotomy [Internet]. Journal of Differential Equations. 2025 ; 416( Ja 2025): 1462-1495.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.10.029
  • Source: Qualitative Theory of Dynamical Systems. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRUZ, Leonardo Pereira Costa da e REZENDE, Alex Carlucci e TORREGROSA, Joan. Coexistence of analytic and piecewise analytic limit cycles in planar piecewise quadratic differential systems. Qualitative Theory of Dynamical Systems, v. 24, n. 2, p. 1-19, 2025Tradução . . Disponível em: https://doi.org/10.1007/s12346-025-01252-8. Acesso em: 08 out. 2025.
    • APA

      Cruz, L. P. C. da, Rezende, A. C., & Torregrosa, J. (2025). Coexistence of analytic and piecewise analytic limit cycles in planar piecewise quadratic differential systems. Qualitative Theory of Dynamical Systems, 24( 2), 1-19. doi:10.1007/s12346-025-01252-8
    • NLM

      Cruz LPC da, Rezende AC, Torregrosa J. Coexistence of analytic and piecewise analytic limit cycles in planar piecewise quadratic differential systems [Internet]. Qualitative Theory of Dynamical Systems. 2025 ; 24( 2): 1-19.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s12346-025-01252-8
    • Vancouver

      Cruz LPC da, Rezende AC, Torregrosa J. Coexistence of analytic and piecewise analytic limit cycles in planar piecewise quadratic differential systems [Internet]. Qualitative Theory of Dynamical Systems. 2025 ; 24( 2): 1-19.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s12346-025-01252-8
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel et al. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator. Journal of Dynamics and Differential Equations, v. 37, n. 3, p. 2565-2600, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10884-024-10378-3. Acesso em: 08 out. 2025.
    • APA

      Belluzi, M., Caraballo, T., Nascimento, M. J. D., & Schiabel, K. (2025). Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator. Journal of Dynamics and Differential Equations, 37( 3), 2565-2600. doi:10.1007/s10884-024-10378-3
    • NLM

      Belluzi M, Caraballo T, Nascimento MJD, Schiabel K. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37( 3): 2565-2600.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10884-024-10378-3
    • Vancouver

      Belluzi M, Caraballo T, Nascimento MJD, Schiabel K. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37( 3): 2565-2600.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10884-024-10378-3
  • Source: Journal of Mathematical Biology. Unidade: ICMC

    Subjects: ESTABILIDADE DE SISTEMAS, ATRATORES, MÉTODOS NUMÉRICOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. A theoretical and computational study of heteroclinic cycles in Lotka-Volterra systems. Journal of Mathematical Biology, v. 90, n. 3, p. 1-31, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00285-025-02190-4. Acesso em: 08 out. 2025.
    • APA

      Bortolan, M. C., Kalita, P., Langa, J. A., & Moura, R. de O. (2025). A theoretical and computational study of heteroclinic cycles in Lotka-Volterra systems. Journal of Mathematical Biology, 90( 3), 1-31. doi:10.1007/s00285-025-02190-4
    • NLM

      Bortolan MC, Kalita P, Langa JA, Moura R de O. A theoretical and computational study of heteroclinic cycles in Lotka-Volterra systems [Internet]. Journal of Mathematical Biology. 2025 ; 90( 3): 1-31.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00285-025-02190-4
    • Vancouver

      Bortolan MC, Kalita P, Langa JA, Moura R de O. A theoretical and computational study of heteroclinic cycles in Lotka-Volterra systems [Internet]. Journal of Mathematical Biology. 2025 ; 90( 3): 1-31.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00285-025-02190-4
  • Source: Selecta Mathematica. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIAS DE HOMOLOGIA, GEOMETRIA MÉTRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MEDEIROS, David Lopes e SAMPAIO, José Edson e SOUZA, Emanuel Oliveira. Moderately discontinuous homology of real surfaces. Selecta Mathematica, v. 31, n. 4, p. 1-37, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00029-025-01076-z. Acesso em: 08 out. 2025.
    • APA

      Medeiros, D. L., Sampaio, J. E., & Souza, E. O. (2025). Moderately discontinuous homology of real surfaces. Selecta Mathematica, 31( 4), 1-37. doi:10.1007/s00029-025-01076-z
    • NLM

      Medeiros DL, Sampaio JE, Souza EO. Moderately discontinuous homology of real surfaces [Internet]. Selecta Mathematica. 2025 ; 31( 4): 1-37.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00029-025-01076-z
    • Vancouver

      Medeiros DL, Sampaio JE, Souza EO. Moderately discontinuous homology of real surfaces [Internet]. Selecta Mathematica. 2025 ; 31( 4): 1-37.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00029-025-01076-z
  • Source: Results in Mathematics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS HIPOELÍTICAS, ANÁLISE DE FOURIER, ANÁLISE HARMÔNICA EM GRUPOS DE LIE, OPERADORES DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DATTORI DA SILVA, Paulo Leandro e KIRILOV, Alexandre e SILVA, Ricardo Paleari. Diagonal systems of differential operators on compact Lie groups. Results in Mathematics, v. 80, n. 6, p. 1-25, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00025-025-02506-2. Acesso em: 08 out. 2025.
    • APA

      Dattori da Silva, P. L., Kirilov, A., & Silva, R. P. (2025). Diagonal systems of differential operators on compact Lie groups. Results in Mathematics, 80( 6), 1-25. doi:10.1007/s00025-025-02506-2
    • NLM

      Dattori da Silva PL, Kirilov A, Silva RP. Diagonal systems of differential operators on compact Lie groups [Internet]. Results in Mathematics. 2025 ; 80( 6): 1-25.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00025-025-02506-2
    • Vancouver

      Dattori da Silva PL, Kirilov A, Silva RP. Diagonal systems of differential operators on compact Lie groups [Internet]. Results in Mathematics. 2025 ; 80( 6): 1-25.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00025-025-02506-2
  • Source: International Journal of Mathematics. Unidade: ICMC

    Subjects: CLASSES CARACTERÍSTICAS, TEORIA DAS SINGULARIDADES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRULHA JÚNIOR, Nivaldo de Góes e MONTEIRO, Amanda e MORGADO, Michelle Ferreira Zanchetta. Equivariant characteristic classes of singular hypersurfaces. International Journal of Mathematics, v. 36, n. 3, p. 2450078-1-2450078-24, 2025Tradução . . Disponível em: https://doi.org/10.1142/S0129167X24500782. Acesso em: 08 out. 2025.
    • APA

      Grulha Júnior, N. de G., Monteiro, A., & Morgado, M. F. Z. (2025). Equivariant characteristic classes of singular hypersurfaces. International Journal of Mathematics, 36( 3), 2450078-1-2450078-24. doi:10.1142/S0129167X24500782
    • NLM

      Grulha Júnior N de G, Monteiro A, Morgado MFZ. Equivariant characteristic classes of singular hypersurfaces [Internet]. International Journal of Mathematics. 2025 ; 36( 3): 2450078-1-2450078-24.[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0129167X24500782
    • Vancouver

      Grulha Júnior N de G, Monteiro A, Morgado MFZ. Equivariant characteristic classes of singular hypersurfaces [Internet]. International Journal of Mathematics. 2025 ; 36( 3): 2450078-1-2450078-24.[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0129167X24500782
  • Source: Ergodic Theory and Dynamical Systems. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, José Santana Campos e TAHZIBI, Ali. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms. Ergodic Theory and Dynamical Systems, v. 45, n. 5, p. 1444-1460, 2025Tradução . . Disponível em: https://doi.org/10.1017/etds.2024.59. Acesso em: 08 out. 2025.
    • APA

      Costa, J. S. C., & Tahzibi, A. (2025). Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms. Ergodic Theory and Dynamical Systems, 45( 5), 1444-1460. doi:10.1017/etds.2024.59
    • NLM

      Costa JSC, Tahzibi A. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2025 ; 45( 5): 1444-1460.[citado 2025 out. 08 ] Available from: https://doi.org/10.1017/etds.2024.59
    • Vancouver

      Costa JSC, Tahzibi A. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2025 ; 45( 5): 1444-1460.[citado 2025 out. 08 ] Available from: https://doi.org/10.1017/etds.2024.59
  • Source: Annali della Scuola Normale Superiore di Pisa, Classe di Scienze. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, OPERADORES POSITIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank David Morais et al. Spectral analysis for some third-order differential equations: a semigroup approach. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, v. XXVI, n. 2, p. 1071-1100, 2025Tradução . . Disponível em: https://doi.org/10.2422/2036-2145.202212_003. Acesso em: 08 out. 2025.
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, Santos, L. A., & Takaessu Junior, C. R. (2025). Spectral analysis for some third-order differential equations: a semigroup approach. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, XXVI( 2), 1071-1100. doi:10.2422/2036-2145.202212_003
    • NLM

      Bezerra FDM, Carvalho AN de, Santos LA, Takaessu Junior CR. Spectral analysis for some third-order differential equations: a semigroup approach [Internet]. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze. 2025 ; XXVI( 2): 1071-1100.[citado 2025 out. 08 ] Available from: https://doi.org/10.2422/2036-2145.202212_003
    • Vancouver

      Bezerra FDM, Carvalho AN de, Santos LA, Takaessu Junior CR. Spectral analysis for some third-order differential equations: a semigroup approach [Internet]. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze. 2025 ; XXVI( 2): 1071-1100.[citado 2025 out. 08 ] Available from: https://doi.org/10.2422/2036-2145.202212_003
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES NÃO LINEARES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel et al. Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation. Journal of Dynamics and Differential Equations, v. 37, n. Ju 2025, p. 1917-1932, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10884-023-10341-8. Acesso em: 08 out. 2025.
    • APA

      Belluzi, M., Bortolan, M. C., Castro, U., & Fernandes, J. (2025). Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation. Journal of Dynamics and Differential Equations, 37( Ju 2025), 1917-1932. doi:10.1007/s10884-023-10341-8
    • NLM

      Belluzi M, Bortolan MC, Castro U, Fernandes J. Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37( Ju 2025): 1917-1932.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10884-023-10341-8
    • Vancouver

      Belluzi M, Bortolan MC, Castro U, Fernandes J. Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37( Ju 2025): 1917-1932.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10884-023-10341-8
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, OPERADORES DIFERENCIAIS, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank David Morais e LÓPEZ-LÁZARO, Heraclio e TAKAESSU JUNIOR, Carlos Roberto. Spectral and probabilistic analysis of third-order linear abstract differential equations. Journal of Dynamics and Differential Equations, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10884-025-10418-6. Acesso em: 08 out. 2025.
    • APA

      Bezerra, F. D. M., López-Lázaro, H., & Takaessu Junior, C. R. (2025). Spectral and probabilistic analysis of third-order linear abstract differential equations. Journal of Dynamics and Differential Equations. doi:10.1007/s10884-025-10418-6
    • NLM

      Bezerra FDM, López-Lázaro H, Takaessu Junior CR. Spectral and probabilistic analysis of third-order linear abstract differential equations [Internet]. Journal of Dynamics and Differential Equations. 2025 ;[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10884-025-10418-6
    • Vancouver

      Bezerra FDM, López-Lázaro H, Takaessu Junior CR. Spectral and probabilistic analysis of third-order linear abstract differential equations [Internet]. Journal of Dynamics and Differential Equations. 2025 ;[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10884-025-10418-6
  • Source: Nonlinear Analysis : Hybrid Systems. Unidade: ICMC

    Subjects: EQUAÇÕES INTEGRAIS DE VOLTERRA-STIELTJES, EQUAÇÕES INTEGRAIS NÃO LINEARES, EQUAÇÕES INTEGRAIS, SOLUÇÕES PERIÓDICAS, OPERADORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Marielle Aparecida et al. On (Θ,T)-periodic solutions of abstract generalized ODEs and applications to Volterra-Stieltjes-type integral equations. Nonlinear Analysis : Hybrid Systems, v. 56, p. 1-17, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.nahs.2024.101573. Acesso em: 08 out. 2025.
    • APA

      Silva, M. A., Bonotto, E. de M., Collegari, R., Federson, M., & Gadotti, M. C. (2025). On (Θ,T)-periodic solutions of abstract generalized ODEs and applications to Volterra-Stieltjes-type integral equations. Nonlinear Analysis : Hybrid Systems, 56, 1-17. doi:10.1016/j.nahs.2024.101573
    • NLM

      Silva MA, Bonotto E de M, Collegari R, Federson M, Gadotti MC. On (Θ,T)-periodic solutions of abstract generalized ODEs and applications to Volterra-Stieltjes-type integral equations [Internet]. Nonlinear Analysis : Hybrid Systems. 2025 ; 56 1-17.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.nahs.2024.101573
    • Vancouver

      Silva MA, Bonotto E de M, Collegari R, Federson M, Gadotti MC. On (Θ,T)-periodic solutions of abstract generalized ODEs and applications to Volterra-Stieltjes-type integral equations [Internet]. Nonlinear Analysis : Hybrid Systems. 2025 ; 56 1-17.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.nahs.2024.101573
  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL, SUBVARIEDADES, IMERSÃO (TOPOLOGIA)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MANFIO, Fernando et al. Hypersurfaces of S³ × R and H³ × R with constant principal curvatures. Journal of Geometry and Physics, v. 213, p. 1-9, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2025.105495. Acesso em: 08 out. 2025.
    • APA

      Manfio, F., Santos, J. B. M. dos, Santos, J. P. dos, & Veken, J. V. der. (2025). Hypersurfaces of S³ × R and H³ × R with constant principal curvatures. Journal of Geometry and Physics, 213, 1-9. doi:10.1016/j.geomphys.2025.105495
    • NLM

      Manfio F, Santos JBM dos, Santos JP dos, Veken JV der. Hypersurfaces of S³ × R and H³ × R with constant principal curvatures [Internet]. Journal of Geometry and Physics. 2025 ; 213 1-9.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2025.105495
    • Vancouver

      Manfio F, Santos JBM dos, Santos JP dos, Veken JV der. Hypersurfaces of S³ × R and H³ × R with constant principal curvatures [Internet]. Journal of Geometry and Physics. 2025 ; 213 1-9.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2025.105495
  • Source: Annali della Scuola Normale Superiore di Pisa, Classe di Scienze. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA, Diego e SANTOS, Jefferson Abrantes e SOARES, Sérgio Henrique Monari. Liouville theorem for a quasilinear non-uniformly elliptic equation in half-spaces and applications. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 2025Tradução . . Disponível em: https://doi.org/10.2422/2036-2145.202409_026. Acesso em: 08 out. 2025.
    • APA

      Moreira, D., Santos, J. A., & Soares, S. H. M. (2025). Liouville theorem for a quasilinear non-uniformly elliptic equation in half-spaces and applications. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze. doi:10.2422/2036-2145.202409_026
    • NLM

      Moreira D, Santos JA, Soares SHM. Liouville theorem for a quasilinear non-uniformly elliptic equation in half-spaces and applications [Internet]. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze. 2025 ;[citado 2025 out. 08 ] Available from: https://doi.org/10.2422/2036-2145.202409_026
    • Vancouver

      Moreira D, Santos JA, Soares SHM. Liouville theorem for a quasilinear non-uniformly elliptic equation in half-spaces and applications [Internet]. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze. 2025 ;[citado 2025 out. 08 ] Available from: https://doi.org/10.2422/2036-2145.202409_026

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025