Attractors for parabolic problems with p(x)-Laplacian: bounds, continuity of the flow and robustness (2025)
- Authors:
- Autor USP: CARVALHO, ALEXANDRE NOLASCO DE - ICMC
- Unidade: ICMC
- DOI: 10.1016/j.jmaa.2025.129284
- Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS QUASE LINEARES; SISTEMAS QUASE LINEARES; ATRATORES
- Keywords: Asymptotic behavior of solutions; Attractors; Variable exponents
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Mathematical Analysis and Applications
- ISSN: 0022-247X
- Volume/Número/Paginação/Ano: v. 547, n. 1, p. 1-30, Jul. 2025
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
CARVALHO, Alexandre Nolasco de e SIMSEN, Jacson e SIMSEN, Mariza Stefanello. Attractors for parabolic problems with p(x)-Laplacian: bounds, continuity of the flow and robustness. Journal of Mathematical Analysis and Applications, v. 547, n. 1, p. 1-30, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2025.129284. Acesso em: 17 fev. 2026. -
APA
Carvalho, A. N. de, Simsen, J., & Simsen, M. S. (2025). Attractors for parabolic problems with p(x)-Laplacian: bounds, continuity of the flow and robustness. Journal of Mathematical Analysis and Applications, 547( 1), 1-30. doi:10.1016/j.jmaa.2025.129284 -
NLM
Carvalho AN de, Simsen J, Simsen MS. Attractors for parabolic problems with p(x)-Laplacian: bounds, continuity of the flow and robustness [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 547( 1): 1-30.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129284 -
Vancouver
Carvalho AN de, Simsen J, Simsen MS. Attractors for parabolic problems with p(x)-Laplacian: bounds, continuity of the flow and robustness [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 547( 1): 1-30.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129284 - Compact convergence approach to reduction infinite dimensional systems to finite dimensions: applications
- Parabolic equations with localized large diffusion: rate of convergence of attractors
- Uma estimativa da dimensão fractal de atratores de sistemas dinâmicos gradient-like
- Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system
- Lower semicontinuity of attractors for gradient systems
- A general approximation scheme for attractors of abstract parabolic problems
- Non-autonomous semilinear evolution equations with almost sectorial operators
- Spatial homogeneity in parabolic problems with nonlinear boundary conditions
- Dynamics in dumbbell domains I: continuity of the set of equilibria
- Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations
Informações sobre o DOI: 10.1016/j.jmaa.2025.129284 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3231160.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
