LONG-TIME BEHAVIOR FOR SEMILINEAR EQUATION WITH TIME-DEPENDENT
AND ALMOST SECTORIAL LINEAR OPERATOR

MAYKEL BELLUZIT, TOMAS CARABALLO¥, MARCELO J. D. NASCIMENTO*, AND KARINA SCHIABEL**

ABSTRACT. In this paper we study the solvability and asymptotic dynamics of a nonautonomous semilinear
reaction-diffusion equation in a domain with a handle Qo = Q U Ry, formed by an open subset 2 C RN con-
nected to a line segment Rp at the ending points of the segment. We also assume that the linear part of this
equation (the diffusion term) is time-dependent and the growth condition on the nonlinearity F' is more general
than linear growth. To obtain existence of local solution, the uniformly almost sectoriality of the family of linear
operator associated to the evolution equation is explored. An abstract result on existence of mild solution for

semilinear problems of the form
ut + A(t)u = F(u), t >7; u(T) = uo,

where A(¢) is uniformly almost sectorial, is proved and we analyze its application to the equation in Q. Through
an iterative procedure we obtain estimates of the solution in the spaces L2k, for any k£ € N, resulting in global well-
posedness of the solution and existence of pullback attractor. We also explore how the line segment Ro impacts
in the pullback attractor obtained. Those results are obtained without requiring monotonicity or asymptotic

assumption on A(t) as t — oo.
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1. Introduction

In this work we study the asymptotic dynamics of a semilinear nonautonomous reaction-diffusion equation in a
domain with a handle and with time-dependent linear operator. To be precise, let Q C RY be a bounded smooth
domain formed by two disjoint components: = Q; UQg, Qr N Qg = 0. Attached to this ), consider the line
segment Ry given by Rg = {(r,0) € R x RN~L:r € (0,1)}. We assume that 2 and Ry are connected by the points
(0,0) € R x R¥=! and (1,0) € R x RV~1, and that there exists a cylinder centered in the line segment Ry that
only intersects ) in its bases (see Figure [1{- (A) below).

o o
\\ N
(A) Domain with handle Qo (B) Dumbbell domain

FIGURE 1. Domain with a handle
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Consider in ¢ = QU Ry the following reaction-diffusion equation:

wy — div(a(t, z)Vw) +w = f(w), xeQ, t>r,

Qw — (), € 09,
an v (1.1)
vy — Op(a(t,r)0pv) + v = f(v), r € Ry, t>T,

v(po) = w(po) and v(p1) = w(p1),

where py = (0,0, ...,0) € RY and p; = (1,0, ...,0) € RY are the junction points between the sets 2 and Ry. We will
refer to equations where the linear part depends on time as singularly nonautonomous. This terminology, adopted
for instance in [9, [14], is not unanimous and, in the case we are considering here, does not refer to discontinuity or
blow-up in time. We adopt it in order to easily distinguish between the case studied here to the well established
case where there is no time-dependence on the linear operators.

Our goal is to analyze the long-time dynamics of this problem, obtaining global well-posedness, estimates for
the solution (w,v) and existence of pullback attractor. We shall see that this problem can be solved with initial
conditions in a LP-like kind of space, producing solutions with more regularity, as a consequence of the parabolic
structure of the problem. There are some particularities of this problem that make interesting this analysis. We

enumerate them in the sequel.

Limit of reaction-diffusion equations on thin domains: Equation is obtained as a limit equation of
a sequence of semilinear reaction-diffusion equations in a domain with a thin channel as in Figure [1| - (B), called
dumbbell domains. Arrieta et al. in [4] [5l [6] considered an autonomous version of and developed a functional
setting suited to study the dynamics of those equations in dumbbell domains. The limit case, when e tends to
zero, is the one we focus in this paper. The channel R, in the limit becomes the line segment Ry, to which we

refer as a handle.

The linear operator is almost sectorial: The abstract initial value problem obtained from is of parabolic
type, but its linear associated operator has a deficiency in its resolvent estimate. This deficiency comes from the
condition at the junction points pg and p1, as proved in [B]. The linear operator in this case belongs to a class
called almost sectorial. Operators in this class generate a special type of integrated semigroups, the semigroups of
growth (introduced by Da Prato [16] and studied by [22], 25]). In Section [2| of this work we briefly introduce the
notion of almost sectorial operator and we also present a slightly modified version of an abstract result given in [12]
proving the existence of local solution for singularly nonautonomous equations in which features almost sectorial
operators, extending the result presented in the aforementioned paper to incorporate other types of nonlinearities

to which we can solve the semilinear problem.

The system is coupled only in one direction: Time-dependence of the diffusion term as well as the fact
that the linear operator is not self-adjoint prevent us to construct an energy function for the equation. To study
global well-posedness and the existence of attracting sets for the problem, we explore the equations in €2 and Ry
separately. The first equation (given in terms of w) is independent of the second equation (in terms of v), whereas
the second one depends of the values that w assumes at the junction points. We say that those equations are
coupled in only one direction. By knowing that a local solution exists, we can separate those equations and treat
them independently. When they are separated, the problems are sectorial and we can use the regularizing effect

well-known for equations with sectorial operators.
The equation in Q: For w in 2 we have the following reaction-diffusion equation

wy — div(a(t, z)Vw) +w = f(w), xeQ, t>r,

gw — 0, x € 09,

(1.2)

which is also singularly nonautonomous equation, but now the linear operator is sectorial. Due to the time-
dependence in the diffusion term, the approach to treat scalar reaction-diffusion equations via comparison results
(as done in [7, [§]) is not available. Instead, we must use the analysis done in [9] for this same equation (1.2]), where

the authors obtained estimates for the solution through an iterative procedure: by knowing L —estimates, they
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were able to obtain L2" " — estimates. With those bounds and classical embedding theorems, global well-posedness

and existence of attracting sets (for the component in Q) follow.

The equation in Rj: On the line segment we have a reaction-diffusion equation with nonautonomous and

nonlinear boundary condition,

vy — Op(a(t, r)0rv) + v = f(v), re€ Ry, t>T, (1.3)

v(t,po) = w(t,po) and v(t,p1) = w(t, p1).

We perform a change of variables in a manner that the conditions on the boundary are incorporated to the
equation. A dependence on w and on w; will appear at this new equation and it will be necessary to provide ways
to control the values that w and w; assume at the points pg and p; in order for the equation in Ry, after the
change of variables, to be properly defined. Once w and w; are controlled and dissipation for the new problem is
ensured, the long-time dynamics of v(¢t) in Ry is studied and we obtain the existence of pullback attracting sets

for the equation in Ry.

Coupling the equations: With information on the asymptotic dynamics for w in £ and v in Ry, we couple
those two evolutions and obtain the existence of pullback attractors for the system in g = QU Ry. This coupling
provides several interesting insights on the pullback attractor, especially informations on how the dynamics in Ry

contributes to form the pullback attractor.

To sum up the ideas, in order to obtain local well-posedness we will treat the system in its integrity and use the
theory of almost sectorial operators to construct the solution. Once existence of local solution is demonstrated, we
separate the equations in Q2 and Ry and we use the fact that the linear operators associated to those are sectorial.
We then apply the regularizing effect that differential equations with sectorial operator posses in order to obtain
estimates and attracting sets for the solutions acting in €2 and Ry.

The iterative procedure developed to obtain estimates in L2" for the solutions is quite general and can be applied
to other parabolic problems in which the linear operator is a second order regular elliptic boundary value problem
(see [I5], Section 1.2.4]). Moreover, no additional condition concerning monotonicity, decay or asymptotic behavior
for the function a(t, x) was necessary, which differs from some studies existent in the literature [IT], 17, 19, 20, 29],
where global well-posedness for the singularly nonautonomous case was only obtained after assuming one of those
conditions.

To attend the proposed agenda, this paper is organized as follows. In Section 2] we present the abstract theory on
singularly nonautonomous equations with almost sectorial operators and we prove a result on local well-posedness,
Theorem It differs from the result provided in [12], since it incorporates a wider class of Banach spaces and
nonlinearities for which we can solve the problem. We also provide in this section a briefly review on sectorial
operators and pullback attractors. Section [3] establishes the functional setting in which we will treat the evolution
equation and the main results on the existence of local solution (Proposition , global solutions and pullback
attractors (Theorem for the problem. In Sections and @We prove the results enunciated in Section |3 To
be precise, Section [4] deals with the equation in €, (1.2)), Section [5] with the equation in Ry, (1.3, and in Section
[6] we couple those informations.

2. Abstract setting

We separated this section into three parts: the first one deals with singularly nonautonomous semilinear prob-
lems with almost sectorial operators; in the second we treat the case where the linear operator is sectorial and we
study regularization and smoothing effect of differential equations in which features sectorial operators; the last

part is a brief review of pullback attractors.
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2.1. Local well-posedness for abstract semilinear problems with almost sectorial operators. Consider
the abstract semilinear evolution problem

us + At)u = F(u), t>r,
w(r)=up €Y = X,

where X,Y are Banach spaces, Y is continuously embedded in X, which we denote by Y — X, A(t) : D(A(t)) C
Y - Y, t €R, is a family of linear operators and F': Y — X a nonlinearity. We assume the following properties
on the linear operators A(t):
(P.1) A(t) : D(A(t)) CY — Y is a closed densely defined linear operator, the domain D = D(A(t)) is fixed in
time, and there exist constants ¢ € (5,7), C > 0 and «a € (0,1], independent of ¢ € R, such that

¥ U{0} C p(=A()),
where X, := {\ € C;|arg)| < ¢}, and

C

-1
|(A+ A(t)) ||£(Y) < T

v e v, uU{0}. (2.1)

The family {A(t)}+er is called a—uniformly almost sectorial and « is the constant of almost sectoriality.

(P.2) There exists a less regular Banach space X such that Y < X and the extension of A(t) in X is also
a—uniformly almost sectorial. Moreover, the resolvent of A(t) has the following regularizing property: it
takes elements of X into the Banach space Y and there exists 5 € (0, 1] such that

C
—1
(P.3) There are constants C' > 0 and ¢ € (0, 1] such that, for any t,7,s € R,
ITA®) = AMIA ()l evy < Clt = 7. (2.3)

We say that the function R 3 ¢ — A(t)A~Y(s) € L(Y) is d—uniformly Holder continuous.

Conditions|(P.1)|-|(P.2)|state that each operator A(t) is almost sectorial and there is a uniformity in this almost
sectoriality. As far as condition note that if 7 = s in (2.3]) and (¢, s) lies in a compact set of R?, then

HA(t)A(s)_lHE(Y) <C.

2.1.1. The autonomous and homogeneous linear problem. For a fixed 7 € R, the linear operator A(7) enjoys the
properties and stated above. If & € (0,1) in then —A(7) does not generate a Cy—semigroup,
nevertheless this almost sectorial operator generates a special type of semigroup, called semigroup of growth 1 — .
It was proved in [12] that —A(7) generates a family of linear operators T_ 4(,(t) given by

T—A(T) (t) = 2mi

/ M+ A(T))7tdN,  forall t > 0, (2.4)
r

where T is the contour of ¥, that is, I' = {re”™% : r > 0} U {re’? : r > 0} and it is orientated with increasing
imaginary part. Some properties of T 4(-)(-) are listed below. They follow from the estimates for the linear
operator A(t) and the expression (2.4)) for T_ 4(;)(+). Its proof can be found in [5l, Section 2].

Proposition 2.1. For a fived 7 € R, if T_a()(t), t > 0, is the family defined in (2.4)), then:

(1) T_a()(-) is a semigroup and satisfies T_ o+ (1) T_a()(5) = T_a¢r)(t + s), for all t,s > 0.
(2) T_a(r)(t) has its images in D(A(T)) C Y, that is, the semigroup has a reqularizing effect for the solution.
(3) T_a(z)(t) is a bounded linear operator and, for allt >0,

1T a¢r) (t)Hg(y) <Ct and [Ty (t)H[:(X,Y) <
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For semigroups of growth, continuity of [0,00) > ¢ + T_ 4(r)(t)y for each y € Y does not necessarily hold for
t = 0. The estimates obtained for the family 7_ 4(-)(¢) in item of Proposition reflects the fact that there
might exist y € Y such that T_ 4(;)(t)y - y as t — 0. Those estimates justify the name semigroup of growth
adopted for them. For further results on semigroups of growth, we recommend [16, 25]. The importance of the
family given by relies on the fact that it is closely related to the solution of the autonomous associated
problem. For instance, consider the problem

us + A(T)u=0, t > 0;

w(0) = ug €Y, 25)

where 7 € R is fixed. The next result states that u(t) = T_ 4(r)(t)uo is a classical solution for (2.5)).

Lemma 2.2. ([5, Lemma 2.1 and Lemma 2.4]) Let T_ 4+ (t) be the linear operator defined in (2.4)). The mapping
(0,00) >t T_ a7y (t) € L(Y) is differentiable and

%T—A(r)(t) = —A(T)T_ a(r) ().

In particular, for ug € Y, u(t) = T_ s¢(t)uo is a classical solution of (2.5) fort > 0.

2.1.2. The nonautonomous linear associated problem. Consider the singularly nonautonomous problem

u+ A u=0, t>71, TR,
L+ A®) .
u(t) =ug €Y.

We search for a two parameter family of linear operator U(t, 7) that, in some sense, is connected to the solution
of the evolution equation and plays a similar role that the semigroup T 4(;)(¢) does for the autonomous case
. Ideally, if w(t, 7, up) is the local solution for , we would be searching for a family U(¢,7) such that
u(t, 7,u9) = U(t,7)ug. This problem was studied simultaneously by Sobolevskii [24] and Tanabe [26], 27, 2§]
for the sectorial case. The almost sectorial case was then considered in [I2]. We briefly motivate the formal
computation that inspires the definition of U(t, 7).

Suppose U(t, 7) is a family satisfying 9,U(t, 7) = —A(t)U(t,7) (that is, a solution of (2.6)). Also, assume that
there exists another family ®(¢,7) € £(Y') such that U(¢,7) is obtained trough the integral equation below

t

U(t, 7') = T—A(T) (t — 7') + / T—A(s) (t — S)(I)(S, T)ds. (27)

Differentiating (2.7) in ¢, adding A(¢)U(¢,7) on both sides and using 0,U (¢, 7) + A(t)U(t,7) = 0, we deduce

t

0=2o(t,7)—[A(T) = AWD)]T_ A (t —T) — / [A(s) — A()]T_a(s)(t — 5)P(s,T)ds.

T

If we denoted
o1(t, 1) = [A(T) = A@®)|T_ a()(t = 7), (2.8)
then ®(¢,7) would have to satisfy

D(t,7) = 1(t,7) +/ w1(t, 8)P(s, 7)ds. (2.9)

T

If we had a family ®(¢, ) satisfying (2.9)), then we could proceed in the reverse way to obtain U(t,7). This is
actually what the authors in [I2] Section 2] did and we enunciate in the sequel.

Proposition 2.3. [12, Section 2] Let A(t),t € R, be a family of linear operators satisfying [(P.1) - |(P.3), where
a € (0,1] is the constant of almost sectoriality and § € (0,1] the constant of Holder continuity.

(1) The family {p1(t,7) € L(Y); t > 7} given by (2.8) is continuous in the uniform operator topology, that is,
{(t,7) eR%Et > 7} 2 (4, 7) = ¢1(t,7) € L(Y) is continuous and its norm can be estimated by

o1t T)leeyy < CE—T1)°T72, fort > 7.
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(2) If a + 6 > 1, then there exists a unique family {®(t,7) € L(Y); t > 7} that satisfies (2.9) and this family is
continuous, that is, {(t,7) € R%t > 7} > (t,7) — ®(t,7) € L(Y) is continuous. Moreover, for any T > 0,
there exists C = C(T) > 0 such that

@, ) cevy < Ot — T2 forall0<t—7<T.

(8) If oo+ 0 > 1, then there exists a unique two parameter family {U(t,7) € L(Y); t > 7} given by (2.7) such
that {(t,7) € R%t > 7} 5 (t,7) = U(t,7) € L(Y) is continuous and, for each T > 0, there exists constant
C =C(T) > 0 such that

Ut D)leyy <CE—7)*"" forall0<t—1<T.
We refer to the family U(t,7) as linear process of growth 1 — « associated to A(t), t € R.

Note that the existence of the family U(t,7) depends on the condition o + ¢ > 1, which is trivially satisfied in

the sectorial case (o = 1). In the sequel we present some additional properties of U(t, T) that can be found in [10].
Proposition 2.4. Let A(t), t € R, be a family of linear operators satisfying|(P.1) - |(P.3) and U(t,T) the linear
process associated to A(t), t € R. Then

(1) U(t,s)U(s,7) =U(t, ), for all T < s < t.

(2) (1,00) 3t — U(t,7) € L(Y) is strongly differentiable and O,U(t,7) = —A{t)U(t,T).

As it happens for the semigroup 7" 4(;)(-), the linear process U(t,7) also has a regularizing property, taking
elements from X into Y (see [10, Theorem 2.13]). In this case, U(t,7) € L(X,Y) and we obtain the following

estimate for the linear process.

Lemma 2.5. Assume that -|(P.3) hold and let B € (0,1] be the constant in (2.2). If «+ 6 > 1 then for any
T > 0 there exists C = C(T) > 0 such that

IO 2y <C@t-7)"t, forall0o<t—71<T.

Proof. We first note that as a consequence of condition |(P.2)| we also obtain [|[®(t,7)||z(x) < C(T)(t — 7)*T0~L.
Therefore, expression (2.7)) for the linear process and estimates obtained in Proposition imply that

t
NUE D ex,yy S NT—am = 7)llcex,y) +/ 1T a¢s)(t = $)|lcx, ) | 2(5, T) |l £ (x)ds

<C(t-7)t+ C’(T)/ (= 5P (s — 7)+2ds
<Ot — 7)1 4 OT)(t — 1) 2B(B,a + 6 — 1)
<Ot - 1+ CT)(t —7)* 7 B(B,a + 6 — 1)
< O(T)(t — 1)

O

Earlier we mentioned that the linear process U(t, 7) indeed recover the solution of the nonautonomous homo-
geneous problem (2.6 by considering u(t) = U(¢, 7)ug. Not only U(¢, 7) solves the nonautonomous homogeneous

problem ({2.6)), but it is also an important tool to solve the semilinear problem, as we discuss next.

2.1.3. Euxistence of local solution for the semilinear problem. Consider the semilinear problem

+ A(t)u = F(u), t>T;
we - Afu = Flu), > (2.10)
u(t) =up €Y = X,

where A(t),t € R, satisfies |(P.1)|-[(P.3)] We assume the following condition for F:
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(NL) The nonlinearity F' : Y — X has a polynomial growth of order p, that is, there exist constants C > 0 and
p > 1, such that for every u,v € Y,

-1 -1
1F() = F@)lx < Clhu—olly (14 Jull§™ + ol ).
[F()llx < C+ [ully).

As it happens for the semigroup T_ 4(;)(t), the family U(t,7) might be discontinuous at the initial time ¢ = 7
[10l Section 2]. Consequently, we shall search for a solution for the semilinear problem that has the same type of
discontinuity of U(t, 7).

Definition 2.6. A function u: (1,7 +to] = Y 4s a mild solution in (7,7 + to] for (2.10) if
(1) u(-) € C((1,7 + t0],Y) and limy_, .+ ||u(t) — U(t, T)uolly =0,

(2) u(:) is given by the variation of constants formula
t

u(t) =U(t, T)up + / U(t,s)F(u(s))ds, forallte (r,7 + to].

The following theorem proves the existence of mild solution for the problem studied. It slightly differs from
Theorem 3.1 in [I2], where the authors approached the problem using fractional power spaces. The way we
enunciate this theorem allows more general situations, as the nonautonomous equation that we wish to
study, where F' is not sub-linear and presents a certain growth. We shall focus now on the case where the problem

is not sectorial, that is, « € (0,1). The sectorial case (e = 1) will be treated separately on the next subsection.

Theorem 2.7. Assume that conditions |(P.1) m hold. Let a € (0,1) be the constant of uniformly almost
sectoriality, 6 € (0,1] be the constant of umformly Hélder continuity and 8 € (0,1] the constant given in |(P.2)
Additionally, assume that a« +d > 1 and F : Y — X satisfie(NL ) with

1<p< 1& (2.11)

Then, for every ug € Y, there exists tg > 0 such that the initial value problem (2.10) has a unique mild solution

defined in (1,7 + to] and ty depends on wug, but can be chosen uniformly for ug in bounded subsets of Y.
Proof. Given 7 € R, ug € Y and p > 0, we search for solutions in the space
K (to,u0) = {v € C((r.7 + 0], Y): subyerrag) [0(8) ~ U Puolly < 1}

where to > 0 will be suitably chosen later. If we set |[§]| x = sup;e(r,r140) 1€(8) — U(t, T)uolly , then K(to,uo) is a

Banach space with this norm. Note that
(t=7)"" o)y < (¢ =)' llv(t) = Ut "uolly + (t =)' " U Tuolly <t5~ %+ Clluolly <k,

and k can be chosen uniformly for ug in bounded subsets of Y. The condition oo+ § > 1 guarantees the existence
of the family U(¢,7) (see Proposition and Lemma [2.5). We consider the operator

(To)(t) :==U(t, T)uo + / U(t,s)F(v(s))ds, te(1,7+tol,

defined in K (tg,up). From the continuity of (¢,7) — U(t, 7)uo it follows that Yv € C((7,7 + to],Y). We prove
that, for small values of o, ¥ is a contraction in K (¢p,up). The Banach Fixed Point Theorem will ensure then
the existence of a unique fixed point for ¥ in K (¢, ug), which is the solution of (2.10). Given v € K (tg,ug) and

using the estimates available for the linear process U (t, ), we have

000~ U7l < [ 106 F@EIy ds < [ 106, P ds

<c/ (t— )1+ kP(s — 1)@ DP)ds

<Ot —7)P 4+ CkP(t —7)P~1=9PB(B, 1 — (1 — a)p).
Condition (2.11)) implies 8 — (1 — «a)p > 0 and also 1 — (1 — a)p > 0. Therefore,
[@o(t) = Ut Duolly < Cleg +15 ] <,
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for tg small enough. Moreover, |Yuv(t) — U(t, 7)vg H—T> 0. Also,
g ) Y

[Wo(t) = Yw(t)lly S/ 1T 3) |2 ox vy 1E(0(5)) = F(w(s))l]x ds
S/ Ct—5) " [lu(s) = w(s)lly L+ o)y + w3 ds
< C’/t(t = )5t (1 2k (s = 1) "m0 ) ds o — w]

<C[t=7)7 + 2w = )70 CTIBB,1 — (1= a)(p - 1)] o~ wll

and from condition ), 8 — (1 —a)(p—1) > 0 and, consequently, 1 — (1 — a)(p — 1) > 0. Therefore, for t,
sufficiently small and any t € (7', T+ 1),

—(1— —1 1
lwo() = wuw@)lly < C [t +t5 V] o —wll < 5 v —wll-
0

2.2. Semilinear problems with sectorial operators: regularization and smoothing effect. If « = 1 in
then instead of an almost sectorial operator A(t), t € R, we have a sectorial operator for which the usual
theory on semigroup and linear process generation holds [23]. A family A(t), ¢ € R, satisfying with a =1 is
called uniformly sectorial.

In this case there is no deficiency in the resolvent estimate, each operator —A(7) generates an analytic
Co—semigroup such that [0,00) > t + T_ 4(r)(t)y is continuous (including at ¢ = 0), for any y € Y. If
holds, we can also ensure existence of a linear process U(t,7) € L(Y) associated to A(t), ¢ € R, such that

[r,00) 5t — U(t,7)y € Y is continuous (including at ¢t = 7). The estimates for those linear families are:
IT-a(r)(Ollcery <€ and (U, 7)]|2(vy < C.

Moreover, parabolic problems in which features sectorial operators have well known regularizing properties
[0, 24] which is useful in the analysis of the long time dynamics of the solution. To take advantage of this well
established regularizing property, we introduce the scale of fractional powers associated to the operators A(t).

Each operator A(¢), ¢t € R, is positive and its fractional powers are well defined (in the sense of [3]). For every
w >0, [A@®)]“ : D([A(t)]¥) C Y — Y is a linear operator and it generates a scale of Banach spaces given by the

fractional power spaces {[Y (¢)]“}w>0, where

Y ) = D([A®)]*) and |- @ = I Ipgawy) = ITAGBF - ly
From |(P.3)[ and the fact that [|A(£)A™! ()| z(v) < C, we conclude that the norms

I Ny e = IAGF - Iy and - [y e = [TAM] - Iy

are equivalent. Therefore, we can fix a time ¢t and refer to Y¥ as domain of any operator [A(t)]. Henceforth,
we obtain a scale of fractional powers {Y*“},>¢ that does not depend on ¢t € R and we can extend it for negative
powers by defining, for w € (0,1), Y% = [Y*]*, where [Y“]* stands for the dual of Y (see [3] and [30] for the

negative fractional power spaces). For this scale we have the following estimates.
Proposition 2.8. [14, Theorem 2.2] For 0 <y <w < 1+, there ezists a constant C(w,y) > 0 such that
AU, T)AT) ey £ Clw, )t —=7)7"%,  forallt >7, T€R.

The scale of fractional power space allows us to obtain solutions in more regular spaces than Y itself, that is,

on fractional powers of Y. Consider the abstract semilinear problem:

us + A(t)u = F(t,u), t > T;

(2.12)
u(t) =ug €Y =Y~

where F is a nonlinearity such that F' : Rx Y — Y% 0 <0 < 1. In [24, Theorem 7] local well-posedness of
(2.12) was proved, which we state next:
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Theorem 2.9. [24] Theorem 7] Let A(t), t € R, be a family of linear operators satisfying [(P.1)| with o = 1 and
with constant § € (0,1] of Hélder continuity. Moreover, assume that F : R xY — Y =9 is a locally Hélder
continuous function in the first variable and locally Lipschitz in the second variable, 0 < 0 < 1. IfU(t,7) denotes

the linear process associated to A(t), then, given any ug € Y,
t
u(t) =U(t, T)ug —|—/ U(t,s)F(s,u(s))ds

is a strong solution for (2.12)), that s,

(1) u(-) € C(Ir, T),Y)NC*((7,T),Y) and u(t) satisfies the equation in ([2.12)) fort > 1.
(2) u(t) €YS, forany0<E<1—0 andt > T.

(8) If ||u(®)|ly is bounded in any bounded set [1,t*], then u(-) is globally defined in time.
(4) ui(t) €YS, forany0<¢<6—0 andt > 7.

Remark 2.10. Usually theorem above is stated with the initial condition in Y7, <0<~y <1, and F : RxY? =Y.
As a consequence, u(t) € Y&, 0 < € <1, and us(t) € Y¥, 0 < w < 8. The case presented above is more suitable
for the application we will consider and it is obtained from the classical presentation considering a realization of

A(t) in the space Z =Y 79,

Note that this type of result is similar to Theorem that we proved earlier. However, the sectoriality of A(t),
t € R allows us to obtain more regularity for the solution u(t) and its derivative u(t). In particular, u is a strong
solution for the problem. We call this property regularization.

2.3. Pullback attractor. In this last part of the abstract theory we provide a brief review in the theory of
pullback attractors. For more details, we recommend [13]. Let Y be a Banach space and {S(¢,7): Y = Y;t > 7}
a family of operators satisfying:

(1) S(t,t) =1y, for allt € R, and S(¢t,7) = S(¢,5)S(s,7), forallt > s> 7,7 € R.

(2) (1,00) 3¢~ S(t,T)ug is continuous for all ug € Y.

Such family is called a process in Y and we also denote it by S(-,-). We will usually call it nonlinear process to
distinguish from the family U(t,7) associated to A(t). To compare the distance between two sets in the phase
space Y, we use the Hausdorff semidistance: dist(A, B) = sup,c 4 infyep d(a,b), for A,B C Y, where d is the

7

metric in Y.

Definition 2.11. The pullback attractor of S(-,-) is a family A(-) = {A(t) CY; t € R} satisfying:

(1) A(t) is compact for allt € R.

(2) A(-) is invariant by S(-,-), that is, S(t,s)A(s) = A(t), for allt > s, s € R.

(8) A(-) pullback attracts bounded sets of Y, that is, for B C'Y bounded and t € R, dist(S(t,s)B, A(t)) "==" 0.
(4) A(-) is the minimal closed family that satisfies (1) — (3).

The existence of such object in the phase space is guaranteed whenever we find a family of compact pullback
attracting sets.

Theorem 2.12. [I3] Theorem 2.12] A process S(-,-) has a pullback attractor A(-) if, and only if, there exists a
family of compact sets K(-) that pullback attracts bounded sets of Y.

Corollary 2.13. If there exists a fixred compact set K C'Y such that, for any bounded set B CY,
dist(S(t,s)B, K) — 0 when s - —o0,
then S(-,-) has a pullback attractor A(-) such that | J,cp A(t) C K.

The description of the pullback attractor can be given in terms of global bounded solutions, which we define in

the sequel.
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Definition 2.14. A continuous function £ : R — Y is a global solution of S(-,-) if for any t,s € R, t > s,
S(t,$)€(s) = £(t). Moreover, we say that a global solution £(-) : R — Y of S(-,-) is bounded in the past if there
exists T € R such that {£(t) : t <7} is bounded in'Y.

Proposition 2.15. [I3l Theorem 1.17] Suppose that the pullback attractor A(-) for the process S(-,-) is bounded
in the past. Then
At) ={&() : &€(-) : R =Y is a global solution bounded in the past}.

3. Singularly nonautonomous reaction-diffusion equation in

In this section we present a functional setting in which we treat the equation (|1.1) and the main results
concerning local solvability, global well-posedness and existence of pullback attractor. We assume that the following
conditions for (1.1)) hold:

(A.1). The function a : R x Q9 — RT is continuously differentiable in each of the sets that form €, that is,
a € CHR x Q,RT) and a € C}(R x Rg,RT). The differentiability on Ry means that if we consider the
function & : (0,1) — RT given by h(r) = a(t, (r,0)), then h € C*(0,1).

(A.2). The function a(t,z) has its image in a closed interval [ag,a1] C (0,00) and if we denote by d'(t,z) =
4a(t, ), b(t,x) := Vya(t,x) the gradient function (in z) of a(t,z), then a/(t,z) and b(t,z) are both
bounded, that is, a'(t,z) € L>=(Qp) and b(t, z) € [L>()]V.

(A.3). The functions a(-,-) and b(-,-) are d—Hélder continuous in the first variable with § € (0,1]:

|a(t,x) - a(s,x)| < C(|t - 8‘57 |b(ta ‘T) - b(S,I)‘ < C|t - 5|5'
(A.4). The nonlinearity f € C1(R,R) and satisfies a polynomial growth condition, that is,

[f(©) < CA+[¢P™), for some p > 1. 3.1)

Remark 3.1. We use x for the variable that takes values in Q, r for the variable that takes values in Ry and
t,s,7 € R for variables representing time. Note that v has the form (z,0) € Rx RN~ with z € [0,1]. We consider

T as an element in the interval [0,1] and treat v,(t,r) as the derivative of v in the real variable r € [0, 1].
The phase space in which we will solve the equation is the Banach space
Uy = LP(Q) x LP(0,1)  with norm [(w,v)llyro = 1wl o0 + 0]l o(0,0);

and (|1.1)) originates the following abstract singular semilinear evolution equation:

(w,v); + A(t)(w,v) = F(w,v), t>T;
(w,v)(7) = (wo,v0) € UY,

where A(t) : D(A(t)) C U — U} is the linear operator with time-independent domain D = D(A(t)) given by

D = {(w,v) € W*P(Q) x W*P(0,1) : ,w = 0 in 9Q and v(p;) = w(p;),i = 0,1}, (3.2)
A(t)(w,v) = (—div(a(t,x)Vw) + w, =0, (a(t,7)0rv) +v), for (w,v) € D, (3.3)

and the nonlinearity F' is given by

flw(z)), r €,
flo(r)), r € Ry.

Remark 3.2. Conditions at po and py in (3.2) only makes sense if w € C(Q). Therefore, p > % must be required
in order to ensure that W2P?(Q) — C(Q) (see [I, Theorem 5.4] ).

(3.4)

Under those conditions, we have the following properties for the family A(t),t € R.

Lemma 3.3. Let A(t): D C U} — UJ) be defined as in (3.3), then there exists C > 0 such that
HA(t) — A(S)}A(T)71|‘£(US) <C|t- s|5, for all T,s,t € R.
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Proof. For (w,v) € D, we have
A(t)(w,v) = A(s)(w,v) = (=div ([a(t, z) — a(s, 2)]Vw), =0, ([a(t, ) — alt, 5)]0rv))
and

/Q |div([a(t,z) — a(s, z)|Vw(x))|’ dz = /Q IVa([a(t, ) — a(s,z)])Vw(z) + [alt, z) — a(s,z)]Aw|” dz

< Ol o /Q { Vaalt,z) - Vaa(s, )| } Veolo)fPds + Ot — of /Q { ja(t, ) — a(s,2)| } Aw(c)Pds

|t = s/° It = s°

< Clt = s ]|w]By 2.

The same calculation on the line segment Ry provides

1
/0 19, (falt, ) — a(s, M0 dw < Clt = s [[0llfy a0 -

Therefore, [|[A(t) — A(s)](w,v)H%g < Clt — sP||(w,v) ||}, for all (w,v) € D. Taking the p — th roots on both

sides and replacing (w,v) by A(7)~1(w,?), we deduce
I[A®) = A(s)JA(T) (@, 9)|ve < Clt = s°l|(@,9)llwg,  ¥(w,7) € Uy.
O

In [I2 Proposition 4.1] and [5, Proposition 3.1] several properties of the family A(t),¢ € R, are presented,
including its almost sectoriality. We enunciate them in the sequel and in the last statement we provide information
about the spectrum of A(t) that can be found in [5, Section 3.2].

Proposition 3.4. The family of linear operators A(t),t € R, satisfies:

(1) A(t) is a closed linear operator and it has a fized dense domain D.

(2) A(t) has compact resolvent and the semigroup T_ 5 (s) is compact.

(3) There exists ¢ € (5,7) and C > 0 (independent of t) such that $, C p(—A(t)), for all t € R, and, for
% <q<p, A€ X, U{0}, we have

- C
[(A+ A1) 1||L(U};,U3) < W’

foreach0<5<1f%f%<l

i %) In particular, the case ¢ = p yields

C
A At -1 0y < I r—
H( + ( )) HE(UP) —= |)\|a +1

f0r0<a<1—%<1.

(4) The spectrum of A(t) consists entirely of isolated eigenvalues, all of them positive and real
a(A@) = { () : 1= X(8) < Xa(t) < ... <A () <)

Remark 3.5. The operator A(t), t € R, given in differs from the operators considered in [5l, 12]. However,
the proof of each statement above is exactly the same as the one presented in [B], since it only depends on the
sectoriality of the operators —div(a(t,x)Vw) +w in Q and —0,(a(t,r)0yv) +v (with Dirichlet boundary condition)
in Ry, and on Sobolev embeddings.

Lemma [3.3| and Proposition [3.4] imply that A(t),t € R, satisfies conditions [(P.1)]- [(P.3)]if we identify X = U2

and Y = UI?. Since Q = Qg U Ry is bounded, we have US — Ug.
We turn our attention to the nonlinearity f. The growth condition (3.1) and the Mean Value Theorem imply
the existence of a constant C' > 0 such that

[F(€) = F@)] < Cle =l + [¢]* ™ + [P,
[F(© < CL+[E).
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Lemma 3.6. Let F' be the nonlinearity defined in (3.4) and suppose that (3.1)) is satisfied. Then F takes elements
of U} to elements in UY, that is, F : U) — U, where q = %. Furthermore, for each (w,v), (w,0) € UJ), we have

1E(w, v) = F(@,0)|lug < Cll(w,v) = (@, 0)l|lug (1 + [[(w, 0) 575" + 1@, 9)I70")
1E(E, (w, v)lwg < O+ [|(w, 0)[|F, )-

Proof. We only verify the first inequality. The second follows in a similar way. Note that

IFwe) = Fl@ 0o = | [ 170 - fite) M [/ ) = oo as|

We consider the integrals separately. It follows from Holder’s inequality that

/\f(w(x))*f(@(fv))lqdfﬁﬁ/quw(fv)*@(I)Iq(lﬂw(x)lq(p’”+Iw(x)lq(”’1))dl'
Q Q

< Cllw =070 q) (1+/ I e 1)”%)

and we used that ¢(p — 1) ;2. = p. Therefore,
1 p—gq
[ 1w = fa@)Ida] < €l = bl (14 Tl + 100n) ™
. -1 _p—1
< Cllw =@l (1+ 0l + 1050y ) -
With the same reasoning, we deduce that
1
! - ~1
[ / (5D = S| < Cllo= bl (4 Dol + 1515 )
Using the above inequalities, we obtain the desired estimate. (]

3.1. Local well-posedness and maximal growth p. Consider the abstract problem

(wvv)t + A(t)(wvv) = F(’LU,U), t>;

(w,v)(7) = (wo,v0) € UY = UY. (3.5)

By considering Y = U and X = U, the family A(t),t € R, satisfies conditions (P.1)I(P.2){ and |(P.3)| and the
nonlinearity F' satisfies [(NL)| In this case, the constant of almost sectoriality o and constant § € (0,1) are any
real numbers in the intervals

N N 1/1 1
0<a<l——=:at and O<,3<1——<—>::B+.
2p 2 2\q p
In order to ensure local well-posedness, we must verify the two remaining inequalities that appear as a restriction

inTheorem at+d>land 1 <p< %

Lemma 3.7. Let p = % and 6 € (0,1] . There exist 0 < 3 < 8% and 0 < o < a™ such that:
(1) a+ 6> 1 holds if, and only if

N
. 3.6
P> 55 (3.6)
(2) 1 < p < 1% holds if and only if,
p(2N + 1)
N d — <p. .
D> an 1 <qg<p (3.7)
. . N [-3 1_2ﬂ_%(l_7)
Proof. Note that a™ + 6 > 1 if and only if p > 25 and = p < 7557, that is, % < W if and only if

q> p(%\ﬁl) Also, the condition p(gg:;l) < ¢ < p only makes sense if p > N.

O
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Note that any lower bound for ¢ is actually an upper-bound for p = % and inequality (3.7) can be restated as
an upper-bound p. for the growth of F' given by

_ P _ 2p+1
Pe= %GN+D) ~ AN +1°
2p+1

The local well-posedness in U} follows from Theorem

Proposition 3.8. Assume that conditions|(A.1) - |(A.4) are satisfied, p > maX{N, Q—J\g} and 1 < p < 2211\’,111 CIf
U(t, ) is the linear process of growth 1 — « associated to A(t), t € R, then (3.5) has a local mild solution in Ug,

(w,v)(:) : (1,7 +T) — Upo, given by

(w,v)(t) = U(t, T)ug —|—/ U(t,s)F(w,v)(s))ds, forallte (r,T).

3.2. Global well-posedness and existence of pullback attractor. In order to obtain global well-posedness,

we require a dissipativeness assumption on f given in terms of the first eigenvalue of A(t), t € R:

(D). The nonlinearity f satisfies
f(s)

limsup —= < 1.
|s|—o0 8

From the definition of lim sup, we can restate @ in a different manner that shall be useful in the following.

Lemma 3.9. Assume that condition holds. There exists 0 < 1 < 1 such that, for each v € (0,71), one can
find a constant M > 0 for which the following inequality holds for all s € R:

f(s)s < (1—7)s*+ M. (3.8)

We enunciate in the sequel the theorem on global well-posedness and existence of pullback attractor for problem
(3.5) in the space Uz? . The proof of the following theorem is postponed to Section |§| and, as we shall see then,
another restriction on the growth of f will appear as a consequence of the fact that we must ensure w; € C(f2) in

order to make sense of w(pg) and w¢(py).

Theorem 3.10. Assume that|(A.1)-|(A.4) and are satisfied, p > max{N, £} and 1 < p < min{QJ‘z,J, 2211\7[111}.
Then the solution (w,v)(t) for the problem (3.5) defines a nonlinear process

S(t, ) = (w,v)(t, 7, (wo, v0)),

in Uy = LP(Q) x LP(0,1) which has a pullback attractor A(t) in UJ. Moreover, |J,cp A(t) lies in a compact subset of
Ch(Q) x C1(0,1), for somen > 0, and pullback attracts bounded sets of Uy in the topology of C1"(Q) x C1"(0,1).

Note that it is only required to know N and § in order to establish values of p and p for which the problem can
be locally and globally solved. For instance, in figure below the shadowed region represents, for N = 3 and two

different values for J, all possible values for p and p such that global well-posedness is guaranteed.

p p

2p+1
7

2 N=3 D N=3 6 D

FIGURE 2. Maximal growth N =3 and 6 = 2 (left-side) or § = } (right-side)
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4. The equation in 2

We already have a local flow in U = LP(2) x LP(0, 1) due to Proposition but we shall consider the solutions
w = w(t) and v = v(t) separately, which allows us to embed them into more regular spaces, as a consequence of

the sectoriality that appears once we separate the problems. We begin with the semilinear equation in ) given by

—div(a(t,z)Vw) + w = f(w), r e, t>T,
8nw = 07 x € 8Q,

and we assume that conditions|(A.1)[to|(A.4) andhold, 6 € (0,1] is the Hélder constant, p > max{N, 2%} and

1 < p < min {%, 22]1\’,111} is the growth of f. Let Aq(t) : D(Aq(t)) C LP(Q) — LP(Q2), t € R, be the family of

linear operators given by

Aq(t)yw = —div(a(t,z)Vw) +w, z € Q, with domain  D(Aq(t)) = W := {W*P(Q); d,,w = 0}, (4.1)

We present some properties of this family that follow from [23] Theorem 7.3.5] and from Lemma

Lemma 4.1. Let Aq(t), t € R be the family defined in (4.1). Then Aq(t), t € R, is uniformly sectorial and
uniformly §— Hélder continuous, that is, there exists constant C' > 0 such that, for all A € £,U{0} and 7,s,t € R,

C

A+ Aq(t) ! vy <
[N+ Aa(t) e (Q))_1+|>\|

and ||[AQ(t) — AQ(S)]AQ(T)ilnL‘,(LIJ(Q)) < C|t - 8|5.

Moreover, the spectrum of Aq(t) consists entirely of isolated eigenvalues, all of them positive, real and satisfying
o(Aa(t)) = {ui(t) : 1 = pn(8) < pia(t) < oo < pia(t) < .}

Therefore, Aq(t) is a positive sectorial operator and its fractional powers [Aq(t)]¥, w € R, are well-defined. As
we discussed in Subsection we can obtain a scale of fractional power spaces W* = D[(Aq(t)]*), for a fixed
t € R and w > 0. This scale is extended to negative fractional powers by considering W~¢ = [IW¥]*. In this case,
WO = LP(Q) and W! =W = D(Aq(t)).

Lemma 4.2. [2I, Theorem 1.6.1] Let {W*“}_1<,<1 be the scale of fractional powers defined above. Then, W% is
compactly embedded in W7, whenever w <~ and the following embeddings hold:

W< — Ch1(Q)  for somen >0, ifw > % +
WY — C¥(2) for some v >0, if w>
W« — L™(Q) for some r > p, if w> 5~ 2I\£,

L"(Q) — W=  for some 1 <r <p, z'fw >N %.

2p7

2p7

We shall connect in the sequel those informations of fractional powers to the nonlinearity. Let Fqn be the
Nemitskil operator associated to f in €Q,

Fo(w)(z) = f(w(z)), forallze Q.

Lemma 4.3. Let w be any real number such that w > 52 — ¥ Then we have Fq : LP(QQ) — W%, Fq is locally
Lipschitz and, for w,w € LP(Q),

|Fa(w) = Fa(@)lw-w < Cllw - @l o (L + lwllf ks, + 18155k,
| Fa(@)lw—o < OO+ wllf0)

Proof. In the proofofLemma we saw that Fq : LP(Q) — L%(Q) and satisfies || Fo(w )||L S C(1+||w||ip(m).
Using Lemma we deduce that LF(Q) — W™ provided w > Y2 — % and we obtain

[Fa(w)llw- < C(1+ Hw”Lp(Q))

The other inequality follows analogously. O
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4.1. Regularization in ). Fixa 6 > J;’—pp — % such that Fq : LP(Q) — W=, The linear family Ag(t),t € R, and

the nonlinearity Fy, satisfy the conditions of Theorem [2.9] and the evolution problem in ©:
w + Aq(t)w = Fao(w), t>T,

w(r) = wo € LP(Q) < W, (42

can be locally solved in LP(€2). Denote by Uq(t,7) € L(LP(€2)) the linear process associated to the family

Aq(t),t € R, and, from the variation of constants formula, w can be given as

t

w(t, T, wo) = Uq(t, T)wo —|—/ Ua(t, s)Fa(w(s))ds. (4.3)

-

The fact that this semilinear problem has a parabolic structure allows us to gain more regularity for w(t)
and w(t). As a matter of fact, Theorem states that w(t) € W'=% and w,(t) € W°=¢ for any t > 7. In
the next auxiliary lemma, we will see that there exists 6 such that w(t) € W= — C17(Q), for some 1 > 0,
and w(t) € Wo=9 — C¥(Q), for some v > 0. Those embeddings are necessary to the change of variables we will

. . . .. 2
perform in next section, but in order to ensure w; € C¥(Q2) for some v, restriction p < % appears, as we see next.

Regularization for w

| | |
I | I

~ FQ
% |
w-? wo° W WOl wmts Wl

Regularization for wy

Lemma 4.4. Let p > max{N, &} and1 < p < min{%Tp7 22]%111}. There exists 0 > 0 such that Fo : LP(Q) — W9,

W0 — cV1(Q) and W0 — C*(Q), for some n > 0 and v > 0. To be precise, @ can be any number in the

interval

N N : 1 N
7= (42— X omin {53} - &) (14)
Proof. Lemma already provides a lower bound for €, that is 6 > 1;/—; — %, and from embeddings on Lemma
we will only have W= < C1(Q) if 1 — 6 > § + &, which implies that 6 < § — &£ and W°=% — C*(Q) if

6—60> %, that is, § < 6 — &£. Therefore, § must be on both intervals

2p°
96(&_1 l_ﬂ)ﬁ(M_ﬂ 5_N)_

2p 2p7 2 2p 2p 2p°? 2p
Note that £ — & is indeed greater than X2 — X as a consequence of p < 221 and p > N. On the other hand
2 2p g 2p 2p q P 2N+1 p : ’
6 — % is greater than J;’—pp — % provided p < 257”. O

From now on, we shall choose # in (4.2]) such that it satisfies the conditions of Lemma In this case, the
local solution w = w(t, 7,wg) of (4.2)) is in C"(Q) and wy(t, 7, wp) is in C¥(R), for any ¢t > 7 and some 7, > 0,
even though the initial condition was in LP(Q).

4.2. Estimates for w, w; and global existence. The evolution problem has the particularity of having
a time-dependent linear operator, which causes some difficulty when studying the long-time dynamics. In [9] the
authors used a method inspired in the Moser-Alikakos technique [2] [I8] to obtain global well-posedness, existence
of pullback attractors and estimates for w and w;. We summarize the results obtained there that will be necessary
in the sequel. In order to simplify the presentation, we gather all the necessary assumptions that we will require

on those results in the sequel:

(S) Assume that |(A.1)| to [(A.4){ and [(D)| hold, M,v > 0 are the constants obtained in (3.8, p > max{N, &}

and 1 < p < min{%, 22 ]’\’,Jfl }. Moreover, let  be any fixed real number on the interval Z given in (4.4)),

implicating that W1=¢ < C17(Q) and W=¢ < C¥(Q), for some 7, v > 0.
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The estimates for w and w; now follow.

Proposition 4.5. [9, Proposition 6.12] Assume that holds. There exist positive constants Eq, Eo, F1 and F;
depending only on 0 such that, for any wy € L®(Q) and 7 < t — 1 < t, the solution w = w(t,7,wy) of (4.2)

satisfies, as long as the solution exists,
leo(t, 7, wo) lw-s < Ere™ 7 (Jlwollz o) + lwollfw o ) + B2
[wi(t, 7, wo) | ws—o < Fre=7¢=T) (HWOHL‘”(Q) + ”woni‘x’(ﬂ)) + P

Note that the assumption of wg € L*(£2) in Proposition does not represent any restriction when proving
global well-posedness of the problem. Indeed, given wy € LP(§2), then any small evolution w(7+¢) = w(r+¢, 7, wo)
starting at this point will be an element of W!'=¢ — L°°(Q) and w(t,7,wo) = w(t,T + ,w(r +¢€)), t > 7 + ¢,
due to the uniqueness of solution. Therefore, the ||w(¢, 7, wo)||1-¢ remains bounded for ¢ large. In particular,
|[w(t)|| £ () also remains bounded since W1=% < LP(Q), and w(t, 7, wo) is globally defined in time, generating a
nonlinear process Sq(t,7) : LP(2) — LP(Q2) given by

t

Sa(t, T)wy = Uq(t, T)wy —|—/ Ua(t, s)Fa(w(s))ds, for all t > 7.

Moreover, the restriction 7 < t — 1 < t only appears to emphasize that the estimate holds if we consider any
small evolution of the system. The value ¢ — 1 could be replaced by ¢t — ¢ for any ¢ arbitrarily small. Finally,
we note that the estimate on the derivative implies that ¢ ~ |w;(¢,z)| € R is bounded for each z € €, since
Wo=0 — cv(Q).

4.3. Existence of pullback attractor for Sq(-,-). From the W!~%—estimate for w(t, 7, wp) the authors in [J]
were able to construct a pullback attracting set, as stated in next proposition.

Proposition 4.6. [9, Theorem 6.13] Assume that holds and let Eo > 0 be the constant in Proposition .
The closed ball in W= centered in zero and with radius Es, By1-6¢[0, Es], is a pullback attracting set for the
process Sq(t, T) in the topology of W'=?.

Since W1=¢ <& Lp (), this closed pullback attracting ball By1-6[0, E5] is a compact pullback attracting set in
LP(Q)). The existence of pullback attractor for Sq(t,7) now follows.

Theorem 4.7. [9, Theorem 6.14] Assume that[(S) holds. The solution w(t) for ([.2)) defines a nonlinear process
Saq(t,T) in LP(Q2) which has a pullback attractor Aq(t) in LP(Q2). Moreover, U,cp Aa(t) lies in a compact subset
of Ct1(R2), for some n > 0, and pullback attracts bounded sets of LP(S2) in the topology of C1"(Q).

5. The equation on the line segment R

We turn our attention to the reaction-diffusion equation that takes place at the line segment Ry. The evolution
in Ry is subordinated to the values w assume at the points, pp and p;, at time ¢. This works as a time-dependent

nonlinear boundary condition for the equation, that is,

vi(t,r) — Opla(t,7)0wv(t, 7)) + v(t, ) = f(v), t>7,re(0,1),

(5.1)
v(t,0) = w(t,po) and v(t, 1) = w(t, p1), t>T.

We assume that all conditions presented in hold. Consequently, v(t,i) = w(t,p;), ¢ = 0,1, makes sense
since w(t,-) € C"(2). We shall denote w(t) at the junction points p; by w(t, p;) or w(t, 7, we)(p;), i = 0,1, if we
wish to emphasize both the initial condition and the value at p;. Each initial condition wy € LP(€)) determines
a different evolution equation in Ry. In this section we study global existence and asymptotic dynamics for
the problem when a given function w(t, 7, wp) is the solution for the problem in .

So far problem has nonautonomous and nonlinear boundary conditions, which prevent us to write it as

an abstract semilinear differential equation. To get over this problem, we shall make a change of variable that
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incorporates this boundary condition into the equation. For that, consider the problem:
Or(a(t,r)0:§) =0, re€(0,1),
&(t,0) = w(t, 7,wo)(po); &(t,1) = w(t,,wo)(p1)-

The solution £(¢,7) of (5.2) will be central in the change of variable, which we describe next. Integrating two

times in r and using the boundary condition, we obtain the solution for this problem.

(5.2)

Lemma 5.1. Given 7 € R and wo € LP(Q2),
f(t,’f‘) = w(ta’ra wO)(pO)XO(taT) +w(tv T, wO)(pl)Xl(tﬂr)a t> T, TE [07 1]’ (53)
is the solution of the equation (5.2) associated to (T,wp) € R x LP(QY), where

1 r
fr a(tl,G)de X fO a(tl,e)da
T | 1(t,7“) = |75 =
fO a(t,G)de fO a(t,@)da

We will use the notation £(t,7;(7,wp)) whenever wish to emphasize the dependence on 7 and wg. Some

Xo(t,r) = (5.4)

properties of the functions X;, i« = 0,1, are given below and they follow directly from expressions (5.4)) and from

(A.3)

Lemma 5.2. The functions X;(t,r), ¢ = 0,1, are differentiable in t, and twice differentiable in r. Moreover,
Xi(t,r), 0:X;(t,r), 0y X;(t,r) and O2X;(t,r) are bounded functions.

As we did in the previous section, we will assume that wy € L°°(€2). There is no loss of generality in doing so,

since any small evolution w(t, 7,wg), t > 7, belongs to C1" ().

Lemma 5.3. Assume that[(S) hold and let (t,wg) € R x L>(Q). There exist constants Gy, G independent of
(1,wp), such that, for T <t —1<t,

€t (o wo )|+ et (rwo))| < Gae ™7 (Jhuoll sy + ol o) + Go
Proof. From expression (5.3)) for £(¢,r) and Lemma we obtain
1§t )| < C(lw(t, 7, wo)(po)| + [w(t, 7, wo) (p1)])

and

600t < [l o) Ko(t,) + w(t,po) S Xolt,7) + b, pr) a1, 7) + (e, 1) 0 67)

< C(|’th(t,p0)| + |’w(t7p0)| + ‘wt(tap1)| + |w(t,p1)‘)

Therefore, from the estimates obtained in Proposition for w and wy, from the fact that w(t) € C17(8) for
some 1 > 0 and w(t) € C¥(Q) for some v > 0, we deduce after relabeling the constants that

€@, )|+ 18:(8 )] < C(Jw(t, po)| + [w(t, pr)| + [we (¢, po)| + wi(t, p1)])

< C(2E) + 2F,)e™ (=7 (||wo|\Loo(Q) + ||w0||f'm(m) + C(2F, + 2Fy)

< Gye <||w0||L°°(Q) + ||wo||[£oo(sz)> + Ga.
O
5.1. Change of variables and associated problem with Dirichlet boundary conditions. If we consider
z(t,r) = v(t,r) — &(t,r), then the initial value problem (5.2)) becomes
2t — Op(a(t,r)0r2) + 2 = 9Y(t, 2), t>7,re(01),
z(t,0) =0 and z(¢,1) =0, t>T, (5.5)
Z(T7 T) = UO(T) - E(T7 ’I") =i20 € LP(O’ 1)7

where

P(t,z) == =&+ fz+¢)
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is a nonlinearity depending on & and ;. Therefore, 9)(t,2) also depends on (7,wy) € R x LP(2) and we can

emphasize this dependence by denoting
w(ta 23 (7—7 ’LU())) - 75@7 T (Ta wO)) - gt(t, s (Ta wO)) + f (g(tv T (T7 wo)) + Z) .
We refer to (5.5) as the associated problem with Dirichlet boundary condition and we define the linear operator
Ap,(t) : D(AR,(t)) C LP(0,1) — LP(0,1) given by
Ap,(t)z = =0, (a(t,r)0r2) + 2, and D(Ag,(t)) =V = W2P(0,1) N Wy *(0,1).

Note that this linear operator Ag,(t) is essentially the same as Aq(¢) defined in (4.1]) for functions in the lower
dimensional space Ry = (0,1). Therefore, Ag,(t) is uniformly sectorial, 6—Hdélder continuous, positive and has a
spectrum given by o(Ag,(t)) = {ri(t) : 1 = v1(t) < va(t) < ... <wu(t) < ...}, Its fractional powers are well-defined

and we obtain a scale of Banach spaces
V¢ = D([AR,(?)]”), 0<w<1,

where V0 = LP(0,1), V! =V = D(Ag,(t)) and V~% = [V¥]*. Moreover, V¥ satisfies the same embeddings that
W« satisfies in Lemma (4.2), with N =1 and Q = (0, 1) instead. Let ¥ be the Nemitskii operator associated to
1, that is,

U(t, 2)(r) = (t, 2(r)).

We shall prove that ¥ satisfies the conditions necessary to ensure local well posedness for the equation in Ry.

5.2. Properties for the nonlinearity. We start by proving that ¢ : R x R — R satisfies an appropriate
dissipative condition for problem ({5.5) and we study how this dissipation depends on the choice of (7, wy).

Proposition 5.4. Assume that holds. Given any (T,wg) € R x L>(Q) there exist a constant H independent
of t, T or wg, such that, for all T <t —1 <,

2p(t,2) < (1—9)2" + e " m(||wgl ) + H, (5.6)
where m(||wo||z) is a constant that depends on ||wo pe(q), given by
2
m(lwoll <) = C [lwollzoe g + l0oll gy + 0]l )
for a constant C' > 0. In particular, m(||wo||L) can be uniformly chosen for wq in bounded subsets of L>°(£2).
Proof. From dissipativeness condition @% on f and the fact that both functions £ and &; are bounded, we obtain
v

t t t
lim sup M < 1. Therefore inf sup 772) < 1 and there exists r; > 0 such that S := sup M < 1. We

|z| =00 z T>O|Z\>T z |z|>71 z
denote 1 := 1 — .5 and we can assume 0 < y; < 1.

Hence, for |z| > r1 and v € (0,v1), w <S8 =1-71 <1—+, which implies that
2h(t, 2) < (1—7)2%,  |z| > 71
For |z| < 71, in order to obtain an estimate for ¥, we first note that
[F(E(t) +2)] < C(L+[8(t) +217) < C27(1+ ] +[£(1)7) < C+ CIEH)]".
Since U(t, z) = —&(t) — &(t) + f(&(t)+2), we deduce, for z € [—ry,71], that
[290(t, 2)| < o[ F(E@)+2)] + 16O+ [&(O)]] < Cry + 1B + rl€(E)] + 1€ ()]
< Cry + O Gle 7 (Hwoﬂgoo(g) + IIwOHfm(Q)) +COrGY + Gre (T (Hw0||L°°(Q) + ||wo\|'2>o<g)) + 711G
< eI [ e + 1001 ey + 00l gy | + H,

where we used the fact that e ?7(*~7) < ¢=7(t=7) and grouped every constant term inside C' and H. Those two

estimates together allow us to conclude that

2
2(t,2) < (1=9)22 + 70 [JJugll o) + [0l ) + 100l )| + H-
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The Nemitskil operator U(¢, z)(x) = ¥ (¢, z(z)) has the following properties:

Lemma 5.5. Assume that holds and let (T,wop) € Rx L*>(82). Let w be any real number such that w > 4~ — ﬁ
Then U : R x LP(0,1) — V™% is locally Hoder continuous in the first variable and locally Lipschitz in the second

variable. Moreover, there exists a constant C > 0 such that, for T <t —1 < t, we have
(2, 2)lv-w < € [ Dmfuollze) + 1+ 20500 (57)
where m(||wo| =) is the constant obtained in Proposition 5.4

Proof. First we note that ¢(t,z) = f(z+&) —£(t) — & (t) and we immediately deduce that v is locally Lipschitz on
z since f is locally Lipschitz. As far as ¥ being locally Holder continuous in ¢, it reduces to proving this property
to t — £(t) and ¢ — &(¢). But those functions are given in terms of w(t), w(t), X;(t,r) and 9;X;(t,r), which are
all locally Holder continuous in ¢. Indeed, w(t) is continuously differentiable in ¢ and, by differentiating in ¢ the
variation of constant formula ({.3)), we obtain wy is also Hélder continuous in t. As far as X;(t,r) and 0,X;(t,r)
local Holder continuity in ¢ follows from the properties required for a(t, ).

Finally, we observe that U : Rx LP(0,1) — L+ (0, 1) since it has the same growth in z that F : L?(0,1) — L5 (0,1)
does. The desired estimate follows from noticing that £, &, € L*°(0, 1) and satisfies the estimate obtained in Lemma

[b-3] We obtain, adjusting the constants whenever necessary,

192,z 0,

==& = &) + FE®) + 2l 2 ) < 1E0) + &) +IFE®) +2) 2
< [1E@) + & ()]

+ C (1 + ||£( ) + Z”[,p(o 1 ) < ||f(t) + gt(t)HLw(O,l) + C + Cllg( )”poo (0,1) + C”Z”Lp(o 1)
< Glefv(th) (”wOHLOO(Q) + ||wOHpoo(Q)) +Go + CGfeipv(tiT) (”w()”l[)/oe(ﬂ) + ”wO”ioo(Q)) + Gg + C”Z”Zp(oJ)

L (0,1) (0,1)

| »
L?(0,1)

2
< C [ (Jlwollz o) + lwo e gy + Nwollfee o)) + 1+ 1214500
< C [l poe o) + 1+ Hznfzp(o,n} .

Moreover, L¢ (0,1) = V¢ as long as w > - — %, which proves inequality (5.7] . O

5.3. Local well-posedness in Ry. Let 8 € T be the fixed real number established in Assumption Since

0 > ];7 2p, then 6 > - — 27; and ¥ : LP(0,1) — V=% We can restate problem (5.5)) in the abstract form

2+ Ap,(t)z =VU(t, z), t>T,

2(0) = 2o = vo — &(T,wp) € LP(0,1) — V7, (5:8)

and in this case, Ag,(t) and ¥ : LP(0,1) — V=9 satisfy all the conditions of Theorem to ensure local well-
posedness. Moreover, the solution z(t, 7, z9) belongs to the space V1=0 for any t > 7, and since 6 € Z, we obtain
1-60> %—I—% >%+%,implyingthat

z(t,7,20) € yi-0oy Cl’”(O, 1),

for some n > 0. We denote by Ug,(¢,7) : LP(0,1) — L?(0,1) the linear process associated to Ag,(t), t € R, and

z can be given as
t
z(t,7,20) = Ug, (t, 7)z0 + / Ug,(t,s)U(t,2(s))ds, forte (r,7+T). (5.9)
This discussion proves the following proposition.

Proposition 5.6. Assume that condition[(S) holds and let (T,wo) € R x L°°(Q) and zy € L?(0,1). Then problem
(5-8) is locally well-posed and its solution z = z(t) € V1=9 — C11(0,1), for some n > 0.

To obtain global well-posedness of the solution, we must ensure that ||z(Z, 7, 20)||L»(0,1) remains bounded, which

we do in the sequel.
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5.4. Estimates in the channel Ry;. We will obtain estimates for z(¢) in the spaces L?(0,1) and L (0,1). For
some k sufficiently large, L2" (0, 1) will be embed in L?(0, 1), implying that ||- lzr,1) < I+l 2t (0,1)» Which allows us
to obtain estimate for the solution on the phase space that we are solving the equation, ensuring global existence
of the solution. Due to the regularizing property that the parabolic equation has, those estimates can be
improved to the more regular space V1% < C17(0,1). Those ideas are similar to the ones obtained in [J] for w
in €, but some extra care must be taken when using the estimate for v due to its dependence on the elapsed
time ¢t — 7.

Moreover, in the results that follow we shall assume that zp € L°(0,1). This does not cause any loss of
generality, since if zg € LP(0,1), then after any arbitrarily small evolution ¢ > 7 in time, z(¢,7,z9) will be an
element of V=% — C1(0,1) < L*°(0,1). Note that 2o € L>(0,1) if and only if (wq,ve) € L=(Q) x L>=(0,1),
since zg = v — &(T, wy).

5.4.1. L?" -Estimates for the solution. We start with the case k& = 1, that is, we obtain L?— estimate for the
solution z = z(t, T, zp).

Proposition 5.7. Suppose that condition holds and let (wg,vg) € L (2) x L*>(0,1) and zg = vg — &(T,wp) €
L>(0,1). Then the solution z(-,7,20) to (5.5)) satisfies, for T <t —1 <t and as long as it exists,

1
2

[[2(t, 7, 20)l|L2(0,1) < 2

1
s 2 . 2 72
e 20| 12 0,) + Le i )m(lwollLoc)ﬁLvH} ]

where H and m(||wo| L) are given in Proposition |5.4)

Proof. We take the inner product in L?(0, 1) of the equation (5.5) with z,

1 d 1 1
——|lz||%2 = —/ a(t,r)|0pzdr — || 2|22 +/ P(t, z)zdr
5 g 1#ILz0,1) ; 2o
and from inequality (5.6)), we obtain
1d (et
a0 + 5 e llelZag0) < (@ = DllelZago) + € m(laoll ) +
d
2912172 0,1y + £||2H%2(o,1) <e T {2m(wo) + 267“_7)14 .

We multiply by e27(*=7) the above inequality, resulting in
d

4t 7| < O [amwo) + 2]

Integrating from 7 to ¢, and using that ma(wp) + eY*=7) H is increasing in ¢, we obtain
—T —T 1 —T
e*1t )||Z(t)||2L2(0,1) —ll0lI22(0,1) < €7 ); [2m(||w0||L°°) +e )QH} :
Therefore,
Con(t—r 2 s 2
12l Z20,1) < €™ l20)1Z2(0,0) + [76 "D m(||wo| <) + VH} ;
and the disered inequality follows by taking the square root on both sides. O

From the L?—estimates of the solution, we shall obtain estimates on the L2" —norm of the solution through an

iterated process. As we will see, we first construct a recursive formula for [|z(t)||, .+ in terms of ||z(¢)||;ox-1.

Lemma 5.8. Suppose that condition holds and let (wo,vg) € L= (Q) x L>(0,1), zo = vog—&(7,wp) € L>(0,1).
If z(-, 7, 20) is the solution of (5.5)) then, given k € N, there exists constant ¢ > 0 independent of k such that, for
any T <t—1<t,

t

k —ok(t—r k 3 _ok(t—r k(s—T
0 g < € O a0l g+ B0 [

2k
L2*(0,1) = ”Lz"'*l(o,l)d‘s

. (5.10)
n [%e—m_am(uwoum) n %H}

as long as the solution exists. The constants H and m(||wol|z~) are given in Proposition [5.4
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Proof. Multiplying the equation in (5.5)) by 221 and integrating in (0, 1), we obtain

1 1 1 —1
_/ @z ldr = / O, (alt,r)d,2)2* "tdr — / 2 dr + P(t, 2)22% " 2dr.
0 0 0 0

Note that the term on the left side is equal = 22" dr and let M(t,7,wo) = e~ m(||lwg| ) + H. From

estimate (5.6 for v (t, z)z, we obtain

2K df 0

1 1 1 1 1
/ ¥(t, z)zz2k_2dr < / (1- 'y)z2kdr + M(t,, wo)/ 2224 < / (1- 7)z2kdr + M (t, 7, wo) {/ [sz + 1]dr]
0 0 0 0

0

and in the last inequality we used the fact that a2 <a? +1 for any positive a. Thus,

1 1 1
2%%/ 22 dr §/ 8(a(t,r)8rz)22k*1dr+ [M(t, T, wp) —’y]/ szdr—i—M(t,T, wp).
0 0 0

Since M (t, T, wp) is independent of r € (0,1), we can proceed exactly as in the proof of Lemma 6.10 of [9] and

we shall obtain the following differential inequality for the L?" -norm of z(t):

d k —T k —T k —T — —T
=[O O 2 ] € TN + € T2 [ (]l e) + H] . (5.10)

From (5.11)) we derive (5.10) by integrating the above expression from 7 to ¢ and by noticing that

2k

e T m(|wl| ) + 7 H]

/ 2l ) + 7P Hds <
T "
=9,
< e2"(t=7) {26_”’(t—7)m(||w0||Loo) + H] ’
Y Y

; 2k L 2 2
00 [ 0D 1) + } 0 [ 2ot + 21|
Y Y

since v € (0,1) and 22:—:17 < 1. 0
From the recurrence formula obtained in Lemma we can derive L2" —estimates for the solution z = 2(t, T, z0).

Proposition 5.9. Assume condition[(S) holds and let (wo,vo) € L>(Q) x L>(0,1), 2o = vo—&(7, wo) € L>(0, 1).
If z(-, 7, 20) is the solution of (b.5)) then, given any k € N, there exists a constant D(k,~) that depends on k and
v such that, forT <t—1<t,

(b= (e 3
(¢ >||L2k(0 yy < D(k, ){e i )HZO||L2"’(0,1)+ %e 7 m([|wol pee ) + 2H} }

as long as the solution exists. The constants H and m(||wo||r) are given in Proposition[5.4

Proof. The result follows from induction. For k£ = 1 the statement is already proved in Proposition Assume
that the statement holds for an integer k — 1 greater than 1, that is, there exists D(k — 1, ) such that

(bt i 3
OIS SD(k—l,'y){e D gl s gy + [2e 0 mwollz) + 2] }

We prove that it also holds for k. To simplify the notation, we shall incorporate terms that depend only on
k and + inside one constant that will always be denoted by D(k,v). From the recurrence formula ([5.10) we can
estimate L2* from the L2~ —bound. First, consider the integral that appears in ([5.10]):

t
k —T
A B O

k
¢ k k . 3 2
< / e? (S_T)D(k - 17’7)2 {e_V(S_T)ZOHLz’Cl(o,U + [%e_v(b_T)m(HwOHLOJ + %H} 2} ds

IN

t x k k
/e2 D=1 )@ (e ol o} s
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2k
2

t
_|_/ €2k(377)D(k B 1’7)(2)%672(19—1)7(577) [%m(HUJOHL&) =+ 2He'y(s ‘r):| ds

2" (1-7)(t=7) 247D @=)(t-7) 2

I
+ D) gy [mlwolle) + 267 |
2k

—I—D(k,’y) 2" (t— 7')[2 —(t—7) (Hw0||L°°)+ H} P

k
< D(k,v)m||20”i2’“”(o,l>

k — T
< D(k7’y)e2 1=y (= ”ZOHsz ‘o)

Therefore,

t
3 _ok—r Fs—r )
C(Qk)Qe 2% (t )/T 62 ( )HZ(S)“iQk*l(O,l)ds
ok

< D(k,7)e 0 g2 ) + D) 267Dl <) + 2H] T

L2k=1(0,1)

We shall replace the above inequality in (5.10), but first note that ||| ; »x-1 01 < [ 1l 2 (0.1) Since the embedding
constant of L2°(0,1) = L2"'(0,1) is less than 1. Moreover, we note that e=2" (=" < ¢=27(t=7) gince v € (0, 1),
and we can assume that the constants D(k,v) and %H are greater than one (we enlarge them if that is not
the case). Under those considerations and recalling that we incorporate new constants inside the same D(k,~)
whenever necessary, we obtain
2k
2

2k(t—7—)||20H2k

L2%(0,1) + D(k 7) 2t 7—)”ZO”

H ( )HL2’V(0 1) L2k (0,1) D(k’ ’y)[ e —y(t—=7) (HwOHLOO) + %H:|

+ |2 Dm(fwoll ) + 2H]
2k
— T v (t—T 2
sD(m){ 2 2] Bk 0y + [ 2677 I mlolli) + 2H] }

Extracting the 2% —th root on both sides and making adjustments on the constant D(k,~), we obtain the desired

estimate. O

k
5.5. Global well-posedness. For any k > log, p, we have L? (0,1) < L?(0,1). Therefore,

lz()llzr0,1) < 2@l 2 (0,1)

and there exists a constant C' > 0 such that, for wy € L>(Q), zo € L>°(0,1) and 7 < t — 1 < ¢, we obtain
1
I+Ollzron < € {e P lanllmun + [2e 7 Dm(lunlw) + 221 | (5.12)

Therefore, z(t, T, zo) is globally defined in time, generating a nonlinear process Sg, (¢, 7) : L?(0,1) — L?(0,1):

t

Sro(t,7)z0 = Ug,(t,T)z0 +/ Ug, (t,8)W¥(s,2(s))ds, for all ¢ > .
5.6. Regularization and estimates in V'~?. The estimates of the solution obtained so far allow us to derive
estimates in better norms, due to the regularizing effect that the parabolic equation (5.8]) has on the solution. To

be precise, we can obtain estimates in V'~?, which is embedded in Ct(0,1) for some n > 0.

Proposition 5.10. Suppose that condition[(S) holds and let (wo,vo) € L>(Q2) x L>(0,1) and 2o = vy —&(7,wp) €
L>(0,1). If z2(-, 7, z0) is the solution of (5.8)), then there exist constants Ky, Ko > 0 independent of T, wg or zo,
such that, for any T <t —1<t,

l2()llvi-e < Kiem 2 Dn [[lwg| e, |20l 2] + Ko, (5.13)

where n [||wol|Le~, ||20]|L>=] s a constant that depends on ||wol| () and ||zl L (0,1) and can be uniformly chosen
for wq in bounded subsets of L™ () and zo in bounded subsets of L>°(0,1).
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Proof. Since 6 G 7 defined in , we have § > &= — o-. Therefore, there exists ¢ > 0 sufficiently small such that
0—ec> 4 — % and Lemma implies that W : Lp (O, 1) — V=0+_ We use the Variation of Constants Formula

(-9, Proposmon apphed to the process Ug, (t,7) and estimate (5.7) for || U (¢, )|y —o+- to obtain

12(t, 7, z0) [vi-o = |l2(t,t — 1, 2(t — 1,7, 20)) [lv1-0
S NUR, (8t = 1)2(t = 1,7, 20) 10 + /til 1UR, (¢, 8)l| gv—o+2,v1-0) [ ¥ (5, 2(5)) [y -o+=ds
< Ollz(t = 1,7, 20) || Le(0,1) + C/t (t — )" o0 (s, 2(8)) | Lr(o,1)ds-
< Ot =17 20)lamton) +C [ (0= 77 [ ol +1+ 12060 )

Using estimate (5.12) for ||z(t)[|1r(0,1) and (5.7) for ||¥ (¢, z)|v -0, we deduce

12(¢, 7, 20) [[v2-0

N

< {0 Dl oy + [2e70 Do) + 281

t

+C [ =97 [ Dmlwlle) + 1+ 12 o s

1
< Cee™ )|z poe (0,1 + Cez [ e YD m(|lwo| pee ) + %B’YH} e [e= 7= m(||lwo | ) + 1] 2

L
e / (s {6_‘”(5_T)||Zolﬁoc(o,1) + [2eCm(wo ) + 2H] } ds
t

1

< Ce1em ) 20| o1y + Ced |21 m((fug 12 + 2eTH] " + O [e (g | <) + 7]

Py

L
+ Ceme—m(t—r)||ZO||Zoc o1y +Ce% [26—7@ Dm(||Jwo || L) + %H} 5

Using the fact that e??(t=7) < 7(t=7) < ¢=2(=7) e can regroup all the constants together and we can restate
the above estimate as

_a 1 2
I2(t, 7, 20)llv1-0 < Kye™? {||ZO||L°°(0,1) + |\Zo||poo(o,1) +m(llwollz) +m(llwollL=)? + m(HonLw)g] + Ko,
where K7, K5 are positive constants, independent of ¢, 7, wg and zy. By denoting

1 L
n [llwoll (@) Izoll = 0.0)] = I20ll 0,1 + 201l (9.1) +mllwollz=) +m(llwollze=)* +m(flwollz=)*,

we obtain the desired inequality. O

5.7. Existence of pullback attracting set for z(t). Note that given any 7 € R and wy € L*°(f), inequality
states that the closed ball centered in zero and with radius Ko in V=% By1-6[0, K>], is a pullback attracting
set for the solutions of (5.8). Moreover, this ball does not depend on the choice of wy € L*°(€). As a matter of
fact, for any wo € LP(Q), due to the immediate regularization effect of the equation in 2, we have By1-0[0, K3] is
a pullback attracting set for problem associated to (7,wg) € R x LP(0,1). This discussion implicates in the
following proposition.

Proposition 5.11. Assume that holds and let Ko > 0 be the constant in Proposition|5.10, For any (1,wp) €
R x LP(Q), the closed ball in V=0 centered in zero and with radius Ko, By1-6[0, K3, is a pullback attracting set
for the process Sg,(t,7) associated to (5.8) in the topology of V1 =Y.

Since V1-¢ <& L?(0,1), this closed pullback attracting ball By1-0[0, K5] is a compact pullback attracting set
in LP(0,1). The existence of pullback attractor for Sg, (¢, 7) inside By1-4[0, K3] now follows.

Theorem 5.12. Assume that [(S) holds and let (1,wo) € R x LP(Q). The solution z(t, T, z0) for (5.8) defines a
nonlinear process Sg,(t,7) in LP(0,1) which has a pullback attractor AR’ (t) in LP(0,1). Moreover, J;cr AR (t)
lies in a compact subset of C"(0,1), for some n > 0, and pullback attracts bounded sets of LP(0,1) in the topology
of C+1(0,1).
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Recall that for each wg € LP(), it corresponds a distinct equation in Ry, so we explicitly incorporate this
dependence on the pullback attractor associated to z = 2(t), by denoting AR’ (). This index is useful to understand
how the attractor contributes to form the attractor of the equation in Q¢ = Q U Ry.

5.8. Returning to the original equation in Rjy. So far we have obtained global existence and estimates in
V1=9 for the solution z(t) of (5.8) in (0,1). However, z(¢) is the solution after the change of variable, while
v(t) = z(t) + £(t). We can prove the following result.

Proposition 5.13. Suppose that condition [(S) holds and let (wg,vo) € L(2) x L*°(0,1) and w = w(t) be the
solution of the equation (4.2) in Q. Ifv(-,T,z0) is the solution of the equation (5.1) in Ro, then there exist constants
Ly, Ly > 0 independent of T, wg or vy, such that, for any 7 <t —1<t,

lo(@)llvi-s < Lie” 2Dk [[[ewol| o, oo | ] + La,

where & [||wo| Lo, ||vol|L>=] depends on ||wol|r=q) and ||vo|Le=(0,1) and can be uniformly chosen for (wo,vo) in
bounded subsets of L>(§2) x L>(0,1).

Proof. Tt follows from Lemma that X;(t,-) € W2P(0,1) and ||X;]|wzr0,1) < C. Since W2P(0,1) < V1=
we have [|X;||y1-¢ < C and from the estimate for w(t) obtained in Proposition and the constant m(||wol|r<)
defined in Proposition we deduce

I1€(E, 73 (7, wo)) lvi—e < w(t, 7, wo) (po) [[| X0 (t, ) l[vi-0 + |w(t, 7, wo) (p2) [[|XL (£, 7) [[v1-0
< C(lw(t, 7,wo)(po)| + [w(t, 7, wo) (p1)])
< CFe 77 (HonLoc(Q + ||1U0||Loo(g)> + CE,
< CEe """ m(|lwo| o) + CEo.
Now it follows from Proposition that
[o@)llvi-e < [[2(O)l[vi-e + [1€(E)[[1-e
< Kre= 3 (ol s 20l ) + Ko + CEre=" (]l ) + CE

< Lie 2 (Jlwol| g, [[vo | o) + Lo,

where we adjusted the constants and used the fact that ||vol|zec(0,1) < |20l (0,1) + [[£(E) || L= (0,1)- O

6. Coupling the dynamics: Existence of pullback attractor

We finally return to the semilinear problem

—~
&
<
~—
g
—~
~
~
I

—At)(w,v)(t) + F(w,v)(t)), t > T;

6.1
(w,v)(1) = (wo,v0) € Uz?. (6.1

Global well-posedness and existence of pullback attracting set for the problem in Q¢ = Q2 U Ry now follows
directly from Propositions [£.5] and [5.13]

Proposition 6.1. Suppose that condition holds and let (wg,vp) € U]? and 8 € Z. The following statements
hold:

(1) The solution (w(t),v(t)) = (w,v)(t, T, (wo,v0)) of (6.1)) exists for allt > 7 and defines a nonlinear process

t

S(t, 7)(wo,v0) = (w(t),v(t)) = U(t, 7)(wo, vo) +/ U(t,s)F(t,s)ds.

T

(2) The set Byri-o [0, E2] X Byi-0 [0, L], where Ea, Ly > 0 are the constants obtained in Propositions and
respectively, is a pullback attracting set for the process S(t, 7). Moreover, By-o [0, E3] X By1-e [0, Lo]
attracts bounded sets of US the W9 x V1= _topology.
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Proof. The fact that (w(t), v(t)) generates a nonlinear process follows directly from the global existence of w and v,
obtained in Theorem and Theorem Now, assume that B C Ug is a bounded set. After any small evolution
in time we obtain a new set S(7 4 &,7)B C U which is now bounded in L>(£2) x LP(0,1). This follows from
the regularizing properties for w(t) and v(t) = z(t) + £(¢) discussed in Sections {4] and [5} Therefore, Propositions
and proves that Byyi-e [0, Ea] X Byi-6 [0, Lo] pullback attracts S(7 4 &,7)B (hence attracts B) in the
stronger norm W!'=¢ x V19, O

We can finally prove Theorem [3.10)

6.1. Proof of Theorem Under the conditions required in Theorem all the statements present in
hold, implicating that W1=¢ < ct(Q) and V19 & CH1(0,1), for some n > 0. It follows from Proposition
that Byi-6 [0, E3] x Byi-e [0, Lo] N Ug is a compact pullback attracting set for the process S(t,7) in US.

Therefore, Corollary [2.13] implies the existence of a pullback attractor
A(t) C Byi-0 [0, EQ] X Byi-e [07 Lg] , VteR,

that attracts bounded sets of U in the topology of W= x V1=¢. Moreover, since By1-o [0, E2] X By1-0 [0, Lo] <
Ch1(Q) x C11(0,1), the last statement follows. O

6.2. Further properties of the pullback attractor. We can derive some conclusions and observations from

the steps taken to obtain the existence of pullback attractor:

(1) Let Aq(t) denote the pullback attractor for the equation in £ (obtained in Theorem [4.7)) and A(t) denote
the pullback attractor obtained in Theorem for the problem in €. Then A(¢) has two components, one
acting in 2 and the other in the channel Ry. Since the dynamics in Q is independent of Ry, the pullback
attractor in Q, Aq(t), and the part of A(t) in Q must be the same. In other words, if II; : Uy — LP(9) is the
projection in the first coordinate, then II; (A(t)) = Aq(?).

(2) Since

U Aa(t) € B0 [0, o] and | JA(t) C Byi-o [0, Ea] x Byis [0, L]
teR teR

both attractors are bounded in the past and they are given by the union of all bounded global solutions

(Proposition , that is
Aq(t) = {o(t); ¢ : R — LP(Q) is a bounded global solution}
A(t) ={(4,0)(t); (¢,¢): R — LP(Q2) x LP(0,1) is a bounded global solution}.

(3) If wy € LP(Q) is such that there exists a bounded global solution ¢ : R — LP(0,1) with ¢(7) = wp, then
¢ originates one problem in the channel Ry (as in (5.5)). The solution v(¢) in the channel is given by
v(t,r) = &(t,r; (1,wp)) + 2(t,7) and in Theorem we proved the existence of a pullback attractor AR’ (t)
in LP(0,1). In this case,

§(t) + Ag, (1)

pullback attracts the solution v(¢) in the channel and since £(¢,r; (7, wp)) is bounded, we have

(6(£),£(1) + A2 (1)) C A(t).

In other words, for a bounded global solution ¢ in Q such that ¢(7) = wo, the set (&(t),&(t) + o (t)) is

a “piece” of the pullback attractor. This illustrates how the dynamics in the channel can collaborate to form

the pullback attractor.

REFERENCES

[1] Apams, R. A., AND FOURNIER, J. J. F. Sobolev spaces, second ed., vol. 140 of Pure and Applied Mathematics (Amsterdam).
Elsevier/Academic Press, Amsterdam, 2003.

[2] ALiKAKOS, N. D. An application of the invariance principle to reaction-diffusion equations. J. Differential Equations 38, 2 (1979),
201-225.

[3] AMANN, H. Linear and quasilinear parabolic problems. Vol. I, vol. 89 of Monographs in Mathematics. Birkhdauser Boston, Inc.,
Boston, MA, 1995. Abstract linear theory.



26

M. BELLUZI, T. CARABALLO, M.J.D NASCIMENTO, AND K. SCHIABEL

[4] ARRIETA, J. M., CARVALHO, A. N., AND L0zADA-CRUZ, G. Dynamics in dumbbell domains. I. Continuity of the set of equilibria.

J. Differential Equations 231, 2 (2006), 551-597.

[5] ARRIETA, J. M., CARVALHO, A. N., AND L0zADA-CRUZ, G. Dynamics in dumbbell domains. II. The limiting problem. J. Differ-

ential Equations 247, 1 (2009), 174-202.

[6] ARRIETA, J. M., CARVALHO, A. N., AND L0zADA-CRUZ, G. Dynamics in dumbbell domains. III. Continuity of attractors. J.

)
=~

[\
ot

[\~
[=2)

[\
3

[\
o,

[\

30]

Differential Equations 247, 1 (2009), 225-259.

ARRIETA, J. M., CARVALHO, A. N., AND RODRIGUEZ-BERNAL, A. Parabolic problems with nonlinear boundary conditions and
critical nonlinearities. J. Differential Equations 156, 2 (1999), 376-406.

ARRIETA, J. M., CARVALHO, A. N., AND RODRIGUEZ-BERNAL, A. Attractors of parabolic problems with nonlinear boundary
conditions. Uniform bounds. Comm. Partial Differential Equations 25, 1-2 (2000), 1-37.

BELLUZI, M., CARABALLO, T., NASCIMENTO, M. J. D., AND SCHIABEL, K. Smoothing effect and asymptotic dynamics of nonau-
tonomous parabolic equations with time-dependent linear operators. J. Differential Equations 314 (2022), 808-849.

BeLLuzi, M. B., CARABALLO GARRIDO, T., NASCIMENTO, M. J. D., AND SCHIABEL, K. Strong solution for singularly nonau-
tonomous evolution equation with almost sectorial operators. Discrete Contin. Dyn. Syst. 43, 1 (2023), 177-208.

Bui, T. B. N., AND REIssiG, M. Global existence of small data solutions for wave models with sub-exponential propagation speed.
Nonlinear Anal. 129 (2015), 173-188.

CARVALHO, A. N., DLOTKO, T., AND NASCIMENTO, M. J. D. Non-autonomous semilinear evolution equations with almost sectorial
operators. J. Evol. Equ. 8, 4 (2008), 631-659.

CARVALHO, A. N., LANGA, J. A., AND ROBINSON, J. C. Attractors for infinite-dimensional non-autonomous dynamical systems,
vol. 182 of Applied Mathematical Sciences. Springer, New York, 2013.

CARVALHO, A. N., AND NASCIMENTO, M. J. D. Singularly non-autonomous semilinear parabolic problems with critical exponents.
Discrete Contin. Dyn. Syst. Ser. S 2, 3 (2009), 449-471.

CHOLEWA, J. W., AND DLOTKO, T. Global attractors in abstract parabolic problems, vol. 278 of London Mathematical Society
Lecture Note Series. Cambridge University Press, Cambridge, 2000.

DA PrATO, G. Semigruppi di crescenza n. Ann. Scuola Norm. Sup. Pisa (8) 20 (1966), 753-782.

D’ABBICcCcO, M., AND EBERT, M. R. A class of dissipative wave equations with time-dependent speed and damping. J. Math.
Anal. Appl. 399, 1 (2013), 315-332.

DroTko, T. Global solutions of reaction-diffusion equations. Funkcial. Ekvac. 30, 1 (1987), 31-43.

EBERT, M. R., AND REISsIG, M. Theory of damped wave models with integrable and decaying in time speed of propagation. J.
Hyperbolic Differ. Equ. 18, 2 (2016), 417-439.

EBERT, M. R., AND REISsIG, M. Regularity theory and global existence of small data solutions to semi-linear de Sitter models
with power non-linearity. Nonlinear Anal. Real World Appl. 40 (2018), 14-54.

HENRY, D. Geometric theory of semilinear parabolic equations, vol. 840 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-
New York, 1981.

OkAzAWA, N. A generation theorem for semigroups of growth order .. Téhoku Math. J. (2) 26 (1974), 39-51.

Pazy, A. Semigroups of linear operators and applications to partial differential equations, vol. 44 of Applied Mathematical
Sciences. Springer-Verlag, New York, 1983.

SoBOLEVSKII, P. E. Equations of parabolic type in a Banach space. Amer. Math. Soc. Transl. 49 (1965), 1-62.

SOBOLEVSKII, P. E. Semigroups of growth a. Dokl. Akad. Nauk SSSR 196 (1971), 535-537.

TANABE, H. A class of the equations of evolution in a Banach space. Osaka Math. J. 11 (1959), 121-145.

TANABE, H. On the equations of evolution in a Banach space. Osaka Math. J. 12 (1960), 363-376.

TANABE, H. Remarks on the equations of evolution in a Banach space. Osaka Math. J. 12 (1960), 145-166.

TANABE, H. Convergence to a stationary state of the solution of some kind of differential equations in a Banach space. Proc.
Japan Acad. 37 (1961), 127-130.

TRIEBEL, H. Interpolation theory, function spaces, differential operators, second ed. Johann Ambrosius Barth, Heidelberg, 1995.

(M. Belluzi) INSTITUTO DE CIENCIAS MATEMATICAS E DE COMPUTAGAO, UNIVERSIDADE DE SA0 PauLo (USP), CEP 13566-590,

SA0 CARLOS - SP, BRASIL.

Ma

Email address: maykelbelluzi@icmc.usp.br

(T. Caraballo) DEPARTAMENTO DE ECUACIONES DIFERENCIALES Y ANALISIS NUMERICO, UNIVERSIDAD DE SEVILLA, FACULTAD DE
TEMATICAS, ¢/ TARFIA S/N, 41012-SEVILLA, SPAIN.

Email address: caraball@us.es
(M. Nascimento) UNIVERSIDADE FEDERAL DE SA0 CARLOS, DEPARTAMENTO DE MATEMATICA, 13565-905 SA0 CARLOS SP, BRAZIL.

Email address: marcelojdn@ufscar.br

(K. Schiabel) UNIVERSIDADE FEDERAL DE SA0 CARLOS, DEPARTAMENTO DE MATEMATICA, 13565-905 SA0 CARLOS SP, BRAZIL.

Email address: kschiabel@ufscar.br



	1. Introduction
	2. Abstract setting
	2.1. Local well-posedness for abstract semilinear problems with almost sectorial operators
	2.2. Semilinear problems with sectorial operators: regularization and smoothing effect
	2.3. Pullback attractor

	3. Singularly nonautonomous reaction-diffusion equation in 0 
	3.1. Local well-posedness and maximal growth 
	3.2. Global well-posedness and existence of pullback attractor

	4. The equation in 
	4.1. Regularization in 
	4.2. Estimates for w, wt and global existence
	4.3. Existence of pullback attractor for S(, )

	5. The equation on the line segment R0
	5.1. Change of variables and associated problem with Dirichlet boundary conditions
	5.2. Properties for the nonlinearity
	5.3. Local well-posedness in R0
	5.4. Estimates in the channel R0
	5.5. Global well-posedness
	5.6. Regularization and estimates in V1-
	5.7. Existence of pullback attracting set for z(t)
	5.8. Returning to the original equation in R0

	6. Coupling the dynamics: Existence of pullback attractor
	6.1. Proof of Theorem 3.10
	6.2. Further properties of the pullback attractor

	References

