
SPECTRAL ANALYSIS FOR SOME THIRD-ORDER DIFFERENTIAL
EQUATIONS: A SEMIGROUP APPROACH

FLANK D. M. BEZERRA:, ALEXANDRE N. CARVALHO;, LUCAS A. SANTOS,

AND CARLOS R. TAKAESSU JR‹.

Abstract. In this paper we consider the ordinary differential equation of third order

d3u

dt3
`Aθ

d2u

dt2
`A%

du

dt
`Au “ 0

where 0 ď θ ă % ď 1, subject to initial conditions

up0q “ u0,
du

dt

ˇ

ˇ

ˇ

t“0
p0q “ u1,

d2u

dt2

ˇ

ˇ

ˇ

t“0
p0q “ u2

where X is a separable Hilbert space, A : DpAq Ă X Ñ X is an unbounded, linear, closed,

densely defined, self-adjoint and positive definite operator, and Aα : DpAαq Ă X Ñ X

denotes the fractional powers for α P p0, 1q. We discuss the possibility of these problems

be well posed (here well posedness means that there is a strongly continuous semigroup

associated to the equation) in a suitable phase space and for different choices of 0 ď θ ă

% ď 1; namely, θ ` % ă 1 (range for which the problem is not well posed), θ ` % “ 1 (range

for which the problem may be well posed) and θ ` % ą 1 (range where the problem may be

well posed and the associated semigroup may be analytic). Moreover, we present cases, as

well as, applications of our results for evolutionary equations.
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1. Introduction

In this paper we consider the ordinary differential equation of third order

(1.1)
d3u

dt3
` Aθ

d2u

dt2
` A%

du

dt
` Au “ 0

where 0 ď θ ă % ď 1, subject to initial conditions

(1.2) up0q “ u0,
du

dt

ˇ

ˇ

ˇ

t“0
p0q “ u1,

d2u

dt2

ˇ

ˇ

ˇ

t“0
p0q “ u2

where X is a separable Hilbert space and A : DpAq Ă X Ñ X is an unbounded, linear,
self-adjoint and positive definite operator, and therefore, A is a positive sectorial operator in
the sense of Henry [20, Definition 1.3.1]. This allows us to define the fractional power A´α of
order α P p0, 1q according to Amann [3, Formula 4.6.9] and Henry [20, Theorem 1.4.2], as a
closed linear operator on its domain DpA´αq with inverse Aα, see e.g. Hasse [19, Proposition
3.2.1], Henry [20, Theorem 1.4.2] and Krein [23, Section I.5.2, Formula (5.8)].

Denote by Xα “ DpAαq for α P r0, 1q, taking A0 :“ I on X0 :“ X when α “ 0. Recall
that Xα is dense in X for all α P p0, 1s, for details see Amann [3, Theorem 4.6.5]. The
fractional power space Xα endowed with the norm

} ¨ }Xα :“ }Aα ¨ }X
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is a Banach space. It is not difficult to show that Aα is an unbounded, linear, self-adjoint
and positive definite operator and consequently it is the generator of a strongly continuous
analytic semigroup on X, see Krěın [23] and Tanabe [29] for any α P r0, 1s. With this
notation, we have X´α “ pXαq1 for all α ą 0, see Amann [3] and Triebel [31] for the
characterization of the negative scale.

In recent years, differential equations of third order has been attracting the attention of
many researchers, see e.g. [1], [2], [5], [6], [7], [12], [13], [21], [22], [24], [26], [28] and references
therein. The applicability of the results associated with these equations is very connected to
the Moore-Gibson-Thompson (MGT) equations; namely, equations of the type

τB3t u´ c∆Du` αB
2
t u´ b∆DBtu “ 0

where τ, c, α, b are parameters from physical-mathematical modeling of acoustic waves and
∆D is the Dirichlet Laplacian operator. For more details see e.g. [1], [2], [7], [12], [13], [21],
[22], [24], [26], [28] and references therein. We also observe regularized MGT equations like

τB3t u´ c∆Du` αB
2
t u´ δ∆DB

2
t u´ b∆DBtu “ 0

treated in the literature with an analytic semigroup approach, where τ, c, α, b, δ are param-
eters from physical-mathematical modeling of acoustic waves, see e.g. [14].

Moreover, we also have works on the analysis of abstract differential equations of third
order in time of the type

d3u

dt3
` Au` η

d2

dt2
A

1
3u` η

d

dt
A

2
3u “ fpuq

where η ě 0 under the point of view of the theory of fractional powers of operators, see e.g
[5, 6] and [16].

Motivated by strictly mathematical questions no physical appeal necessarily, in this paper
we deal with a wide class of abstract differential equations of third order in time as in (1.1)-
(1.2) on the phase space Ypθ,%q to be defined below, in the sense of the classical theory of
strongly continuous semigroup, see e.g. [27], and establish the range of the parameters were
the well posedness may be pursued. We treat (1.1)-(1.2) in a suitable phase space Ypθ,%q in
different cases for 0 ď θ ă % ď 1 separately; namely, θ ` % ă 1, θ ` % “ 1 and θ ` % ą 1.

Since well-posed problems (in the sense of semigroups of bounded linear operators) and
regular solutions (analytic semigroups) are characterized by the spectral properties of a linear
operator, the spectral analysis plays a big role to understand problem (1.1). The aim of this
paper is to study the spectrum of the operator related to problem (1.1) (see (2.2) and (2.4))
and from the localization of the spectrum, we determine the situations for which ill-posedness
surely happens and the situations where the well posedness and/or regularity may happen.
Using a tool from Galois Theory (discriminant of a third order polynomial) we cover the
study of the spectrum in all cases where 0 ď θ ă % ď 1. Thus, for any 0 ď θ ă % ď 1 we
know if our problem can be well-posed (that is, the localization of the spectrum allows it)
and, in this case, if the solution can be regular.

The article is organized in the following way. In Section 2 we present general facts about
the spectral behavior of our problem. In Section 3 we consider the problem of the generation
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of strongly continuous and analytic semigroup. Here, we treat (1.1)-(1.2) in a suitable phase
space in different cases for 0 ď θ ă % ď 1 separately; namely, θ ` % ă 1, θ ` % “ 1 and
θ ` % ą 1. Moreover, some examples are given. Finally, in Section 4 we explore our results
to present an application associated with the Dirichlet Laplacian operator ∆D.

The figure below better illustrates what is happening.

θ

%

1
3

2
3

11
2

1

1
2

% “ 2θ % “ 1`θ
2

Figure 1. θ%´plane

1.) We have the region θ` % ă 1 (and 0 ď θ ă % ă 1) in the θ%´plane, where we show that
the problem is not well posed. This means that the operator ´Λpθ,%q (see (2.4)) associated
to (1.1) does not generate a continuous semigroup;

2.) In the line segment with endpoints p0, 1q and p1
2
, 1
2
q in the θ%´plane we show that it is

possible that the operator ´Λpθ,%q generates strongly continuous semigroup of bounded linear
operators, but it does not generate an analytic semigroup of bounded linear operators, for
instance:

2.1.) In p0, 1q we show that it does not generate a strongly continuous semigroup of bounded
linear operators;

2.2.) In p1
3
, 2
3
q we show that it generates a strongly continuous semigroup of bounded linear

operators;

3.) For 1 ă θ ` %, % ă 2θ and 2% ă θ ` 1 and 1 ă θ ` % and 2θ ă % we show that it is
possible that the operator ´Λpθ,%q generates strongly continuous semigroup of bounded linear
operators however, it does not generate an analytic semigroup;

4.) We have the region 1 ă θ`%, θ`1 ď 2% and % ă 2θ (and 0 ď θ ă % ă 1) in the θ%´plane,
where we show that it is possible that ´Λpθ,%q can generate an analytic semigroup;
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5.) In the line % “ 2θ we show that ´Λpθ,%q can generate an analytic semigroup.

An analysis on the well-posedness and stability of abstract systems with the presence of
fractional powers can be found e.g. in [15] and [17]. Motived by these works we summarize
our results using the θ%´plane in the Figure 1.

2. Functional framework

The problems of the type (1.1)-(1.2) can be studies in several functional spaces. Motivated
by works [5], [8], [9] and [25] we consider the initial value problem (1.1)-(1.2) on the phase
space

Ypθ,%q “ X%
ˆXθ

ˆX

endowed with the norm

(2.1) @ u “
”

u
v
w

ı

P X, }u}2Ypθ,%q “ }u}
2
X% ` }v}2Xθ ` }w}

2
X .

We can write the problem (1.1)-(1.2) as a first order abstract system on Y of the form

(2.2)

$

&

%

du

dt
` Λpθ,%qu “ 0, t ą 0,

up0q “ u0,

where v “ ut, w “ utt, u “
”

u
v
w

ı

, u0 “

”

u0
v0
w0

ı

, and Λpθ,%q : DpΛpθ,%qq Ă Ypθ,%q Ñ Ypθ,%q denotes

the unbounded linear operator defined by

(2.3) DpΛpθ,%qq :“ X1
ˆX%

ˆXθ

and

(2.4) Λpθ,%q “
”

0 ´I 0
0 0 ´I
A A% Aθ

ı

where

Λpθ,%q

”

φ
ϕ
ψ

ı

:“
” ´ϕ

´ψ

Aφ`A%ϕ`Aθψ

ı

,

for any
”

φ
ϕ
ψ

ı

P DpΛpθ,%qq.

The choice of space was motived by the previous papers [5] and [6] jointly with the Example

3.5 which treated the case θ “ 1
3

and % “ 2
3
, where Yp 1

3
, 2
3
q “ X

2
3 ˆX

1
3 ˆX.

Proposition 2.1. Let Λpθ,%q : DpΛpθ,%qq Ă Ypθ,%q Ñ Ypθ,%q be the unbounded linear operator
defined in (2.3)-(2.4), then we have all following.

piq Λpθ,%q is densely defined and closed;
piiq Zero belongs to resolvent set ρpΛpθ,%qq of Λpθ,%q; that is, it has an inverse Λ´1

pθ,%q where

Λ´1
pθ,%q

”

φ
ϕ
ψ

ı

:“
”

A%´1 Aθ´1 A´1

´I 0 0
0 ´I 0

ı”

φ
ϕ
ψ

ı

“

”

A%´1φ`Aθ´1ϕ`A´1ψ
´φ
´ϕ

ı

for any
”

φ
ϕ
ψ

ı

P Ypθ,%q. If, in addition, we assume that A has compact resolvent in X

and 0 ă θ ă % ă 1, then Λpθ,%q has compact resolvent in Y .
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Proof: piq Firstly, it is not hard to see that Λpθ,%q is densely defined. Secondly, if
”

φn
ϕn
ψn

ı

P

DpΛpθ,%qq converges to
”

φ
ϕ
ψ

ı

P DpΛpθ,%qq as nÑ 8 in Ypθ,%q and
” ´ϕn

´ψn
Aφn`A%ϕn`Aθψn

ı

converges to
”

f
g
h

ı

as nÑ 8 in Ypθ,%q, then A1´θφn `A
%´θϕn ` ψn Ñ A1´θφ`A%´θϕ` ψ as nÑ 8 in X,

and using the fact the Aθ is a closed operator we guarantee that

Aφn ` A
%ϕn ` A

θψn Ñ Aφ` A%ϕ` Aθψ

and Λpθ,%q is closed;
piiq It is not hard to see that zero belongs to resolvent set ρpΛpθ,%qq of Λpθ,%q and

Λ´1
pθ,%q

”

φ
ϕ
ψ

ı

:“
”

A%´1φ`Aθ´1ϕ`A´1ψ
´φ
´ϕ

ı

for any
”

φ
ϕ
ψ

ı

P Ypθ,%q. Moreover, if we assume that A has compact resolvent in X, and
”

φn
ϕn
ψn

ı

P Ypθ,%q is a bounded sequence, then Λ´1
pθ,%q

”

φn
ϕn
ψn

ı

is a convergent subsequence in Ypθ,%q,

where 0 ă θ ă % ă 1.
The figure below better illustrates what is happening.

θ

%

˝

˝˝

1

1

Figure 2. Resolvent compactness region

�

Proposition 2.2. Let Λpθ,%q : DpΛpθ,%qq Ă Ypθ,%q Ñ Ypθ,%q be the unbounded linear operator
defined in (2.3)-(2.4). If we assume that A has compact resolvent in X and 0 ă θ ă % ă 1,
then the following assertions are true.

piq If σpΛpθ,%qq and σppΛpθ,%qq denotes the spectrum and point spectrum of the opera-
tor Λpθ,%q, respectively; then σpΛpθ,%qq “ σppΛpθ,%qq contains at most countably many
eigenvalues λj;

piiq limjÑ8 |λj| “ 8;
piiiq For all λj P σpΛpθ,%qq, then range of λjI´Λpθ,%q is closed and dimKerpλjI´Λpθ,%qq “

codimRpλjI ´ Λpθ,%qq ă 8.
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Proof: It is an immediate consequence of the Proposition 2.1. �

To better present our results on spectrum of the operator Λpθ,%q we remember the definition
of approximate point spectrum, see [30, Chapter V]. If λ P C is an eigenvalue of Λpθ,%qq, then
there exists an x P DpΛpθ,%qq such that }x}Ypθ,%q “ 1 and Λpθ,%qx “ λx.

Definition 2.3. Let Λpθ,%q : DpΛpθ,%qq Ă Ypθ,%q Ñ Ypθ,%q be the unbounded linear operator
defined in (2.3)-(2.4). We call λ P C an approximate eigenvalue of Λpθ,%q if to each ε ą 0
there corresponds some x P DpΛpθ,%qq such that }x}Ypθ,%q “ 1 and }λx´ Λpθ,%qx}Ypθ,%q ă ε. The
set of all such that λ is called the approximate point spectrum of Λpθ,%q.

Remark 2.4. We note that ´Λpθ,%q is not a dissipative operator on Ypθ,%q, according to Pazy

[27, Definition 4.1, Chapter 1]. Indeed, if u be a non-trivial element in X1 and u “
”

u
u
0

ı

P

DpΛpθ,%qq, then 〈
´Λpθ,%qu,u

〉
Y
“

〈” u
0

´pAu`A%uq

ı

,
”

u
u
0

ı〉
Ypθ,%q

“ }u}2X% ą 0.

Explicitly, this means that ´Λpθ,%q is not an infinitesimal generator of a strongly continuous
semigroup of contractions on Ypθ,%q.

However, our analysis does not end here. We may know a little more about spectral
behavior of the unbounded linear operator Λpθ,%q and better understand what can happen in
the sense of theory of strongly continuous semigroup of bounded linear operators.

3. Generation of strongly continuous and analytic semigroup

Since our operator ´Λpθ,%q never generates a strongly continuous semigroup of contractions
on Ypθ,%q, we can analyze the behavior of the spectrum for each 0 ď θ ă % ď 1 to understand
on which cases the operator can possibly generate a strongly continuous or even an analytic
semigroup provided we change the norm in the vector space Ypθ,%q. To cover all cases, we
divide them in three sub-cases, where we assume that A has compact resolvent in all of them.

3.1. The case θ ` % ă 1. We will show that this is the only case where ´Λpθ,%q can not
generate a strongly continuous semigroup of bounded linear operator on Ypθ,%q.

Theorem 3.1. Let Λpθ,%q : DpΛpθ,%qq Ă Ypθ,%q Ñ Ypθ,%q be the unbounded linear operator defined
in (2.3)-(2.4). If θ ` % ă 1 and 0 ď θ ă % ă 1, then ´Λpθ,%q does not generate a strongly
continuous semigroup of boundary linear operator on Ypθ,%q.

Proof: We know that the eigenvalues of ´Λpθ,%q are the roots of the polynomial below

(3.1) pnpλq “ λ3 ` µθnλ
2
` µ%nλ` µn,

where µn are the eigenvalues of A with µn Ñ `8.
Since the discriminant of (3.1) is

(3.2) ∆ “ 18µθ`%`1n ` µ2θ`2%
n ´ 4µ3%

n ´ 4µ3θ`1
n ´ 27µ2

n
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and θ ` % ă 1, we guarantee that the discriminant is negative for large n; that is, (3.1) has
two distinct complex roots zn and zn and one real root xn.

We will prove that Repznq Ñ `8 as nÑ `8; that is, ´Λpθ,%q does not generate a strongly
continuous semigroup of bounded linear operators.

From Girard’s formula we guarantee that

(3.3) Repznq “
´µθn ´ xn

2
.

Take ε ą 0 such that

(3.4) θ ` %` 3ε ă 1 and 2θ ` ε ă 1.

If we prove that pnp´µ
θ
n ´ µ

ε
nq ą 0, it will follow from

lim
λÑ´8

pnpλq “ ´8

and by the Intermediate Value Theorem that

xn ă ´pµ
θ
n ` µ

ε
nq, for large n

and from (3.3) we will guarantee that Repznq Ñ `8.
Indeed, it is easy to see that

pnp´µ
θ
n ´ µ

ε
nq “ ´µ

2θ`ε
n ´ 2µθ`2εn ´ µ3ε

n ´ µ
θ`%
n ´ µ%`εn ` µn,(3.5)

which implies (from (3.4)) that

pnp´µ
θ
n ´ µ

ε
nq ą 0, for large n

and we conclude the proof. �

Example 3.2 (Case θ “ % “ 0). In this example we consider θ “ % “ 0, and consequently
the third-order differential equation

(3.6)
d3u

dt3
`
d2u

dt2
`
du

dt
` Au “ 0.

In this case we have

Yp0,0q “ X ˆX ˆX

endowed with the norm given in (2.1), and Λp0,0q : DpΛp0,0qq Ă Yp0,0q Ñ Yp0,0q denotes the
unbounded linear operator defined by

(3.7) DpΛp0,0qq :“ X1
ˆX ˆX

and

(3.8) Λp0,0q “
”

0 ´I 0
0 0 ´I
A I I

ı

where

Λp0,0q

”

φ
ϕ
ψ

ı

:“
” ´ϕ

´ψ
Aφ`ϕ`ψ

ı

for any
”

φ
ϕ
ψ

ı

P DpΛp0,0qq.
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We already know from Theorem 3.1 that ´Λp0,0q does not generate a strongly continuous
semigroup of bounded linear operators. The computation below emphasize this result and
show how the spectrum explodes on the right side of the complex plane.

Let

cpµq “
3

b

3
?

3
a

27µ2 ´ 14µ` 3` 27µ´ 7

with µ P σpAq. Note that σpp´Λp0,0qq is given by

σ1 Y σ2 Y σ3

where

σ1 “
!

λ P R;λ “
cpµq

3 3
?

2
´

2 3
?

2

3cpµq
`

1

3

)

,

σ2 “
!

λ P C;λ “ ´p1´ i
?

3q
cpµq

6 3
?

2
`

3
?

2p1` i
?

3q

3cpµq
`

1

3

)

,

and

σ3 “ σ2 “ tλ P C;λ P σ2u.

Indeed, let

´Λp0,0q

”

φ
ϕ
ψ

ı

“ λ
”

φ
ϕ
ψ

ı

be the eigenvalue problem for ´Λp0,0q. Then
$

’

&

’

%

´ϕ “ λφ,

´ψ “ λϕ,

Aφ` ϕ` ψ “ λψ,

that is

(3.9) λ3 ´ λ2 ` λ´ µn “ 0,

where tµnunPN denotes the ordered sequence of eigenvalues of A including their multiplicity.
We already know that the real root of the equation (3.9) is equal to

λ1pµnq “
cpµnq

3 3
?

2
´

2 3
?

2

3cpµnq
`

1

3

and the two complex roots of the equation (3.9) are given by

λ2pµnq “ ´p1´ i
?

3q
cpµnq

6 3
?

2
`

3
?

2p1` i
?

3q

3cpµnq
`

1

3

and

λ3pµnq “ ´p1` i
?

3q
cpµnq

6 3
?

2
`

3
?

2p1´ i
?

3q

3 ¨ cpµnq
`

1

3
.
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Note that

lim
nÑ8

λ1pµnq “ ´8,

lim
nÑ8

λ2pµnq “
´1

2
` i

?
3

2

¯

8,

lim
nÑ8

λ3pµnq “
´1

2
´ i

?
3

2

¯

8.

The figure below better illustrates what is happening.

Re

Im

ω “ argp1
2
` i

?
3
2
qλ1pµnq

λ2pµnq

λ3pµnq

Figure 3. Eigenvalues of ´Λp0,0q

Example 3.3 (Case θ “ 0 and % “ 1
2
). In this example we consider θ “ 0 and % “ 1

2
, and

consequently the third-order differential equation

(3.10)
d3u

dt3
`
d2u

dt2
` A

1
2
du

dt
` Au “ 0.

In this case we have

Yp0, 1
2
q “ X

1
2 ˆX ˆX

endowed with the norm given in (2.1), and Λp0, 1
2
q : DpΛp0, 1

2
qq Ă Yp0, 1

2
q Ñ Yp0, 1

2
q denotes the

unbounded linear operator defined by

(3.11) DpΛp0, 1
2
qq :“ X1

ˆX
1
2 ˆX

and

(3.12) Λp0, 1
2
q “

” 0 ´I 0
0 0 ´I

A A
1
2 I

ı

.

Once more, it follows from Theorem 3.1 that ´Λp0, 1
2
q does not generate a continuous semi-

group.
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Let

cpµq “
3

b

3
?

3
a

´14µ3{2 ` 27µ2 ` 3µ` 27µ´ 9
?
µ` 2

with µ P σpAq. Note that σpp´Λp0, 1
2
qq is given by

σ1 Y σ2 Y σ3

where

σ1 “
!

λ P R;λ “ ´
3
?

2p3
?
µ´ 1q

3cpµq
`

3cpµq

3 3
?

2
`

1

3

)

,

σ2 “
!

λ P C;λ “
p1` i

?
3qp3

?
µ´ 1q

3 ¨ 22{3cpµq
´
p1´ i

?
3qcpµq

6 3
?

2
`

1

3

)

,

and

σ3 “ σ2 “ tλ P C;λ P σ2u.

Indeed, let

´Λp0, 1
2
q

”

φ
ϕ
ψ

ı

“ λ
”

φ
ϕ
ψ

ı

be the eigenvalue problem for ´Λp0, 1
2
q. Then

$

’

&

’

%

´ϕ “ λφ,

´ψ “ λϕ,

Aφ` A
1
2ϕ` ψ “ λψ,

that is

(3.13) λ3 ´ λ2 ` µ
1
2
nλ´ µn “ 0,

where tµnunPN denotes the ordered sequence of eigenvalues of A including their multiplicity.
We already know that the real root of the equation (3.13) is equal to

λ1pµnq “
cpµnq

3 3
?

2
´

2 3
?

2

3 ¨ cpµnq
`

1

3

and the two complex roots of the equation (3.13) are given by

λ2pµnq “
p1` i

?
3qp3

?
µn ´ 1q

3 ¨ 22{3cpµnq
´
p1´ i

?
3qcpµnq

6 3
?

2
`

1

3

and

λ3pµnq “
p1´ i

?
3qp3

?
µn ´ 1q

3 ¨ 22{3cpµnq
´
p1` i

?
3qcpµnq

6 3
?

2
`

1

3
.

Note that

lim
nÑ8

λ1pµnq “ ´8,

lim
nÑ8

λ2pµnq “ p
1

2
` i

?
3

2
q8,

lim
nÑ8

λ3pµnq “ p
1

2
´ i

?
3

2
q8,
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The figure below better illustrates what is happening.

Re

Im

γ “ argp1
2
` i

?
3
2
qλ1pµnq

λ2pµnq

λ3pµnq

Figure 4. Eigenvalues of ´Λp0, 1
2
q

3.2. The case θ ` % “ 1. In this case our polynomial

pnpλq “ λ3 ` µθnλ
2
` µ1´θ

n λ` µn

has ´µθn as a real root and therefore (from (3.3)) we guarantee that zn and zn are imaginary
with

Op|Impznq|q “ µ
1´θ
2

n , 1

that is, ´Λpθ,%q does not generate an analytic semigroup but it can possibly generate a
strongly continuous semigroup of bounded linear operators on Y .

Example 3.4 (Case θ “ 0 and % “ 1). In this example we consider θ “ 0 and % “ 1, and
consequently the third-order differential equation

(3.14)
d3u

dt3
`
d2u

dt2
` A

du

dt
` Au “ 0.

This is perhaps the most familiar case of ordinary differential equation of third order of
the type (1.1) because it sends us to Moore-Gibson-Thompson equations, see e.g. [1], [2], [7],
[12], [13], [21], [22], [24], [26], [28]. In this case we have

Yp0,1q “ X1
ˆX ˆX

endowed with the norm given in (2.1), and Λp0,1q : DpΛp0,1qq Ă Yp0,1q Ñ Yp0,1q denotes the
unbounded linear operator defined by

(3.15) DpΛp0,1qq :“ X1
ˆX1

ˆX

1That is, the term |Impznq| has same order of µ
1´θ
2

n .
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and

(3.16) Λp0,1q “
”

0 ´I 0
0 0 ´I
A A I.

ı

Remembering that A has compact resolvent in X, the spectrum of the unbounded linear
operator ´Λp0,1q is given by

σ1 Y σ2 Y σ3

where

σ1 “ t´1u,

σ2 “
!

λ P C;λ “ i
?
µ, µ P σpAqu,

and

σ3 “ σ2 “ tλ P C;λ P σ2u.

see e.g. [26]. For the sake of completeness, we will reproduce the arguments. Let

´Λp0,1q

”

φ
ϕ
ψ

ı

“ λ
”

φ
ϕ
ψ

ı

be the eigenvalue problem for ´Λp0,1q. Then

$

’

&

’

%

´ϕ “ λφ,

´ψ “ λϕ,

Aφ` Aϕ` ψ “ λψ,

that is

(3.17) λ3 ` λ2 ` µnλ` µn “ pλ` 1qpλ2 ` µnq “ 0,

where tµnunPN denotes the ordered sequence of eigenvalues of A including their multiplicity.
The real root of the equation (3.17) is equal to

λ1pµnq “ ´1

and the two complex roots of the equation (3.17) are given by

λ2pµnq “ i
?
µn

and

λ3pµnq “ ´i
?
µn.

The figure below better illustrates what is happening.
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Re

Im

´1

Figure 5. Eigenvalues of ´Λp0,1q

Although the behavior of the spectrum lead us to believe that´Λp0,1q generate a continuous
semigroup of linear operators, this is not the case. In order to prove that ´Λp0,1q does not
generate a strongly continuous semigroup of bounded linear operators on Yp0,1q, consider the
bounded linear operator Pp0,1q : DpΛp0,1qq Ă Yp0,1q Ñ Yp0,1q given by

Pp0,1q “

»

–

0 0 0
0 0 I
0 0 0

fi

fl

and note that
Sp0,1q “ ´pPp0,1q ` Λp0,1qq

is given by

Sp0,1q “

»

–

0 ´I 0
0 0 0
A A I

fi

fl.

From

pλI ` Sp0,1qq
´1 “

»

–

λ´1I λ´2I 0
0 λ´1I 0

´pλ2 ` λq´1A ´λ´2A pλ` 1q´1I

fi

fl

and the fact that λ´2I : X Ñ X1 is not bounded we proved that Sp0,1q does not generate
a strongly continuous semigroup on X. Consequently, ´Λp0,1q does not generate a strongly
continuous semigroup of bounded linear operators on Yp0,1q.

Example 3.5 (Case θ “ 1
3

and % “ 2
3
). In this example we consider θ “ 1

3
and % “ 2

3
, and

consequently the third-order differential equation

(3.18)
d3u

dt3
` A

1
3
d2u

dt2
` A

2
3
du

dt
` Au “ 0.
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In this case we have

Yp 1
3
, 2
3
q “ X

2
3 ˆX

1
3 ˆX

endowed with the norm given in (2.1), and Λp 1
3
, 2
3
q : DpΛp 1

3
, 2
3
qq Ă Yp 1

3
, 2
3
q Ñ Yp 1

3
, 2
3
q denotes the

unbounded linear operator defined by

(3.19) DpΛp 1
3
, 2
3
qq :“ X1

ˆX
2
3 ˆX

1
3

and

(3.20) Λp 1
3
, 2
3
q “

” 0 ´I 0
0 0 ´I

A A
2
3 A

1
3

ı

.

Since A has compact resolvent in X, the spectrum of the unbounded linear operator ´Λp0,1q
is given by

σ1 Y σ2 Y σ3

where

σ1 “ t´ 3
?
µu,

σ2 “
!

λ P C;λ “ i 3
?
µ, µ P σpAqu,

and

σ3 “ σ2 “ tλ P C;λ P σ2u.

Indeed, let

´Λp 1
3
, 2
3
q

”

φ
ϕ
ψ

ı

“ λ
”

φ
ϕ
ψ

ı

be the eigenvalue problem for ´Λp 1
3
, 2
3
q. Then

$

’

&

’

%

´ϕ “ λφ,

´ψ “ λϕ,

Aφ` A
2
3ϕ` A

1
3ψ “ λψ,

that is

(3.21) λ3 ` µ
2
3
nλ

2
` µ

1
3
nλ` µn “ 0,

where tµnunPN denotes the ordered sequence of eigenvalues of A including their multiplicity.
The real root of the equation (3.21) is equal to

λ1pµnq “ ´ 3
?
µn

and the two complex roots of the equation (3.9) are given by

λ2pµnq “ i 3
?
µn

and

λ3pµnq “ ´i 3
?
µn.

The figure below better illustrates what is happening.
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Re

Im

σp´A
1
3 q

iσp´A
1
3 q

´iσp´A
1
3 q

Figure 6. Eigenvalues of ´Λp 1
3
, 2
3
q

In this case we can show that there exists a strongly continuous semigroup of bounded
linear operator on Yp 1

3
, 2
3
q. Remember that Yp 1

3
, 2
3
q “ X

2
3 ˆX

1
3 ˆX and define

z “ utt ` A
2
3u.

Note that

zt ` A
1
3 z “ 0

and denoting V “

«

A
2
3 u

A
1
3 ut

A
1
3 z

ff

we have
dV

dt
“MV , where

M “

«

0 A
1
3 0

´A
1
3 0 1

0 0 ´A
1
3

ff

.

Since M “ B `D, where B is the bounded linear operator given by

B “
”

0 0 0
0 0 1
0 0 0

ı

and D is the linear operator given by

D “

«

0 A
1
3 0

´A
1
3 0 0

0 0 ´A
1
3

ff

which is dissipative using an equivalent norm on X ˆX ˆX, we guarantee that our original

problem (2.2) has a solution U “
”

u
ut
utt

ı

P X
2
3 ˆX

1
3 ˆX in the sense of the theory of strongly

continuous semigroup of bounded linear operators.
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Example 3.6 (Case θ “ 1
2

and % “ 1
2
). In this example we consider θ “ % “ 1

2
, and

consequently the third-order differential equation

(3.22)
d3u

dt3
` A

1
2
d2u

dt2
` A

1
2
du

dt
` Au “ 0.

In this case we have

Yp 1
2
, 1
2
q “ X

1
2 ˆX

1
2 ˆX

endowed with the norm given in (2.1), and Λp0, 1
2
q : DpΛp0, 1

2
qq Ă Yp 1

2
, 1
2
q Ñ Yp 1

2
, 1
2
q denotes the

unbounded linear operator defined by

(3.23) DpΛp 1
2
, 1
2
qq :“ X1

ˆX
1
2 ˆX

1
2

and

(3.24) Λp 1
2
, 1
2
q “

” 0 ´I 0
0 0 ´I

A A
1
2 A

1
2

ı

where.
If we assume that A has compact resolvent in X, then the spectrum of the unbounded linear

operator ´Λp 1
2
, 1
2
q is given by

σ1 Y σ2 Y σ3

where

σ1 “ t´
?
µn; µn P σpAquu,

σ2 “
!

i 4
?
µn; µn P σpAqu,

and

σ3 “ σ2 “ tλ P C;λ P σ2u.

Indeed, let

´Λp 1
2
, 1
2
q

”

φ
ϕ
ψ

ı

“ λ
”

φ
ϕ
ψ

ı

be the eigenvalue problem for ´Λp 1
2
, 1
2
q. Then

$

’

&

’

%

´ϕ “ λφ,

´ψ “ λϕ,

A
1
2 pA

1
2φ` ϕ` ψq “ λψ,

that is

(3.25) λ3 ` µ
1
2
nλ

2
` µ

1
2
nλ` µn “ pλ` µ

1
2
n qpλ

2
` µ

1
2
n q “ 0,

where tµnunPN denotes the ordered sequence of eigenvalues of A including their multiplicity.
The real root of the equation (3.25) is equal to

λ1pµnq “ ´
?
µn

and the two complex roots of the equation (3.25) are given by

λ2pµnq “ i 4
?
µn
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and

λ3pµnq “ ´i 4
?
µn.

The figure below better illustrates what is happening.

Re

Im

´
?
µ1

Figure 7. Eigenvalues of ´Λp 1
2
, 1
2
q

3.3. The case θ ` % ą 1. We will show that in this sub-case there exists the possibility of
the operator ´Λpθ,%q generate an analytic semigroup on Ypθ,%q. First of all, remember that
when ∆ ă 0 the real solution of (3.1) is given by

(3.26) xn “ ´
µθn
3
`
fpµnq

3 3
?

2
´

3
?

2p3µ%n ´ µ
2θ
n q

3fpµnq

and one of the complex solution zn is

(3.27) zn “ ´
µθn
3
´ p1´ i

?
3q
fpµnq

6 3
?

2
` p1` i

?
3q
p3µ%n ´ µ

2θ
n q

3 3
?

4fpµnq
,

where

(3.28) fpµnq “
3

b

9µθ`%n ´ 2µ3θ
n ´ 27µn `

?
´27∆ .

We will divide the sub-case θ ` % ą 1 into two sub-cases:
Sub-case % ă 2θ: Remember that in this case we have

Op9µθ`%n ´ 2µ3θ
n ´ 27µnq “ ´2µ3θ

n .

Now we divide this sub-case in the following possibilities:

a) θ ` 1 “ 2%: In this sub-case we have

(3.29) ∆ “ 14µ
3θ`3

2
n ´ 3µ3θ`1

n ´ 27µ2
n
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and since 3θ ` 1 ą 3θ`3
2

we guarantee that ∆ ă 0 for large n. Moreover, note that
3θ ` 1 is the larger exponent in (3.29); that is,

Op∆q “ ´3µ3θ`1
n

and from
3θ ` 1

2
“

2θ ` 2%

2
ă 3θ we have

Opfpµnqq “ ´
3
?

2 ¨ µθn.

Hence, it follows from (3.26) and (3.27) that

Opznq “ µ
´ θ

2
n

ˆ

´1´ i
?

3

2

˙

and Opxnq “ ´µ
1´θ
2

n .

b) θ ` 1 ą 2%: Note that in this sub-case we have

Op∆q “ ´4µ3θ`1
n ,

which ensures that ∆ ă 0 for large n.

Note that from θ ` % ą 1 and % ă 2θ we must have θ ą
1

3
; that is,

3θ ` 1

2
ă 3θ.

Thus

Opfpµnqq “ ´
3
?

2 ¨ µθn

and following as in case (3.3) we guarantee that

OpRepznqq “ ´
µ%´θn

2
, OpImpznqq “

ˆ

µ1´θ
n ´

µ2%´2θ
n

4

˙

1
2

and

Opxnq “ ´µ
θ
n `

µ%n
µθn
.

c) θ` 1 ă 2%: In this case the discriminant ∆ in (3.2) is positive for large n (the larger
exponent is 2θ` 2%q; that is, pn has three distinct real roots. From (3.1) it is easy to
see that all roots are negative for large n.

Sub-case % “ 2θ: In this case we have

∆ “ ´3µ6θ
n ` 14µ3θ`1

n ´ 27µ2
n

and the larger exponent of ∆ is 6θ, which guarantees that ∆ ă 0 for large n; that is, pn has
two complex roots.

Moreover, from

9µθ`%n ´ 2µ3θ
n ´ 27µn “ 7µ3θ

n ´ 27µn

we have

Opfpµnqq “
3
?

16 ¨ µθn.
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With some algebraic manipulation we obtain that

Opznq “ µθn

ˆ

´1´ i
?

3

2

˙

and Opxnq “ ´µ
1´2θ
n .

Sub-case % ą 2θ: In this case the larger exponent of ∆ is 3% again, which guarantees that
∆ ă 0 and pn has two complex roots. Now will not proceed as the previous cases, since
the highest order of fpµnq vanishes and make the computations harder. Our approach will
consist in use the Intermediate Value Theorem together with (3.3) to guarantee that ´Λpθ,%q
can not be sectorial but can generate a continuous semigroup of bounded linear operators.

Remember that xn ă 0 for large n and from (3.3) we have

Repznq
2
“
µ2θ
n ` 2µθnxn ` x

2
n

4
and

(3.30)

ˆ

Impznq

Repznq

˙2

“
4µn

´xnµ2θ
n ´ 2x2nµ

θ
n ´ x

3
n

´ 1.

Hence, if we show that
4µn

´xnµ2θ
n ´ 2x2nµ

θ
n ´ x

3
n

Ñ `8

we guarantee that ´Λpθ,%q can not be sectorial. Note that from 1 ă θ ` % and 2θ ă % we

must have
2

3
ă %. Moreover, it holds

(3.31) 1` θ ă 2%.

Indeed, if θ ď
1

3
we have

1` θ ď
4

3
ă 2%

and if θ ą
1

3
1` θ ă 4θ ă 2%.

Fix ε ą 0 such that

(3.32) 1` θ ` ε ă 2%, 1` ε ă θ ` %, 2` 3ε ă 3% and 2θ ` ε ă %.

It is easy to see that
pnp´µ

1´%`ε
n q ă 0

which implies, together with pnp0q ą 0 that xn ą ´µ
1´%`ε
n . Therefore

´xnµ
2θ
n ´ 2x2nµ

θ
n ´ x

3
n ă µ1`2θ´%`ε

n ` 2µθ`2´2%`2εn ` µ3´3%`3ε
n

that is,
´xnµ

2θ
n ´ 2x2nµ

θ
n ´ x

3
n ď 4µ1`2θ´%`ε

n

and

(3.33)
4µn

´xnµ2θ
n ´ 2x2nµ

θ
n ´ x

3
n

ě
µn

µ1`2θ´%`ε
n

.
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It follows from (3.32) that
1` 2θ ´ %` ε ă 1

and from (3.33) we conclude that

4µn
´xnµ2θ

n ´ 2x2nµ
θ
n ´ x

3
n

Ñ `8.

From (3.30) we guarantee that ´Λpθ,%q can not be sectorial. On the other hand 1 ă θ ` %
implies that pnp´µnθq ă 0 and consequently

´µθn ă xn ă 0.

Therefore, from (3.3) we obtain that Repznq ă 0 and, since xn ă 0, ´Λpθ,%q can generate
a strongly continuous semigroup of bounded linear operators.

Example 3.7 (Case θ “ 1
2

and % “ 1). In this example we consider θ “ 1
2

and % “ 1, and
consequently the third-order differential equation

(3.34)
d3u

dt3
` A

1
2
d2u

dt2
` A

du

dt
` Au “ 0.

In this case we have
Yp 1

2
,1q “ X1

ˆX
1
2 ˆX

endowed with the norm given in (2.1), and Λp 1
2
,1q : DpΛp 1

2
,1qq Ă Yp 1

2
,1q Ñ Yp 1

2
,1q denotes the

unbounded linear operator defined by

(3.35) DpΛp 1
2
,1qq :“ X1

ˆX1
ˆX

1
2

and

(3.36) Λp 1
2
,1q “

” 0 ´I 0
0 0 ´I

A A A
1
2

ı

Since θ` % ą 1 and % “ 2θ, we already know that ´Λp 1
2
,1q can be a sectorial operator. The

following Theorem shows how the spectrum behaves, more specifically, how it explodes on the
left side of the complex plane.

Let

cpµq “
3

b

7µ3{2 `
a

´378µ5{2 ` 81µ3 ` 729µ2 ´ 27µ

with µ P σpAq. If we assume that A has compact resolvent in X, then the spectrum of the
unbounded linear operator ´Λp 1

2
,1q is given by

σ1 Y σ2 Y σ3

where

σ1 “
!

λ P R;λ “ ´
2µ 3
?

2

3 ¨ cpµq
`
cpµq

3 3
?

2
´

?
µ

3

)

,

σ2 “
!

λ P C;λ “
µ 3
?

2p1` i
?

3q

3 ¨ cpµq
´
cpµqp1´ i

?
3q

6 3
?

2
´

?
µ

3

)

,

and
σ3 “ σ2 “ tλ P C;λ P σ2u.
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Indeed, let

´Λp 1
2
,1q

”

φ
ϕ
ψ

ı

“ λ
”

φ
ϕ
ψ

ı

be the eigenvalue problem for ´Λp 1
2
,1q. Then

$

’

&

’

%

´ϕ “ λφ,

´ψ “ λϕ,

A
1
2 pA

1
2φ` A

1
2ϕ` ψq “ λψ,

that is

(3.37) λ3 ` µ
1
2
nλ

2
` µnλ` µn “ 0,

where tµnunPN denotes the ordered sequence of eigenvalues of A including their multiplicity.
From (3.26) and (3.27) we know that the real root of the equation (3.37) is equal to

λ1pµnq “ ´
2µn

3
?

2

3 ¨ cpµnq
`
cpµnq

3 3
?

2
´

?
µn

3

and the two complex roots of the equation (3.37) are given by

λ2pµnq “
µn

3
?

2p1` i
?

3q

3 ¨ cpµnq
´
cpµnqp1´ i

?
3q

6 3
?

2
´

?
µn

3

and

λ3pµnq “
µn

3
?

2p1´ i
?

3q

3 ¨ cpµnq
´
cpµnqp1` i

?
3q

6 3
?

2
´

?
µn

3
.

Moreover, it holds

lim
nÑ8

λ1pµnq “ ´1,

lim
nÑ8

λ2pµnq “ p´
1

2
` i

?
3

2
q8,

lim
nÑ8

λ3pµnq “ p´
1

2
´ i

?
3

2
q8.

and the figure below better illustrates what is happening.
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Re

Im

λ1pµnq

´1
˚

λ2pµnq

λ3pµnq

Figure 8. Eigenvalues of ´Λp 1
2
,1q

Therefore, we can conclude that ´1 belongs to the approximate point spectrum of Λp 1
2
,1q.

Remark 3.8. Note that if ∆ ą 0 for large n then pn has three real roots and it follows easily
that they are all negative at the infinity; that is, ´Λpθ,%q can be sectorial in this cases.

When ∆ ă 0 we know that fpµnq ‰ 0 since fpµnq “ 0 if, and only if all roots of pn are

real and equal to ´
µθn
3

. Therefore we can use expressions (3.26) and (3.27) appropriately.

3.4. Conclusion. The tables below summarize our results, where Xmeans that it is pos-
sible to generate the respective strongly continuous semigroups of bounded lin-
ear operators on Y , and @@X means that it it not possible to generate the respective
strongly continuous semigroups of bounded linear operators on Y .

For θ ` % ă 1 we have the following results:

Analytic Semigroup Strongly Continuous Semigroup
@@X @@X

Table 1. Case θ ` % ă 1

For θ ` % “ 1 we have the following results:

Analytic Semigroup Strongly Continuous Semigroup
@@X X

Table 2. Case θ ` % “ 1

For θ ` % ą 1 we have:
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Cases Analytic Semigroup Strongly Continuous Semigroup

% ă 2θ and θ ` 1 “ 2% X X
% ă 2θ and θ ` 1 ą 2% @@X X
% ă 2θ and θ ` 1 ă 2% X X

% “ 2θ X X
% ą 2θ @@X X

Table 3. Case θ ` % ą 1

Note that we did not characterize all cases where ´Λpθ,%q is the generator of a strongly
continuous semigroup or an analytic semigroup. However, despite the difficulties encountered
in the non-convered cases, we have the following conjecture:

Conjecture: Assume that 0 ă θ ă % ă 1 and 1 ă θ ` %. Then:

(1) If 1 ă θ ` %, % ă 2θ and θ ` 1 ď 2%, then ´Λpθ,%q generates an analytic semigroup;
(2) If θ “ 2%, then ´Λpθ,%q generates an analytic semigroup;
(3) If 2θ ă %, then ´Λpθ,%q generates a Gevrey semigroup;
(4) If % ă 2θ and 2% ă θ ` 1, then ´Λpθ,%q generates a Gevrey semigroup,

for more details on Gevrey class semigroups, see e.g. [11].
Moreover, it is possible to get asymptotic eigenvalue expression for the θ ´ ρ unit square.

The partition of the parameter region rely on this, see e.g. [4] and [18].

4. Applications

We can consider a bounded domain Ω Ă RN with smooth (at least C2,αq boundary and
N P N. Let A “ ´∆D be the unbounded linear operator, where ∆D denotes the Laplacian
operator with homogeneous Dirichlet boundary condition. Its L2pΩq-normalized eigenfunc-
tions are denoted wj, and its eigenvalues counted with their multiplicities are denoted λj;
that is,

(4.1) ´∆Dwj “ µjwj.

It is well know that 0 ă µ1 ď µ2 ď ¨ ¨ ¨ ď µj ď ¨ ¨ ¨ , µj Ñ 8 as j Ñ 8, and that ´∆D is a
positive self-adjoint operator in L2pΩq with domain Dp´∆Dq “ H2pΩq X H1

0 pΩq, and that
∆D generates a compact analytic C0-semigroup in L2pΩq, see Henry [20].

This allows us to define the fractional power A´α of order α P p0, 1q according to Amann
[3, Formula 4.6.9] and Henry [20, Theorem 1.4.2], as a closed linear operator on its domain
DpA´αq with inverse Aα. Denote by Xα “ DpAαq for α P r0, 1s. The fractional power space
Xα endowed with graphic norm

} ¨ }Xα :“ }Aα ¨ }X

is a Banach space; namely, e.g., if mα is an integer, then

Xα
“ Dpp´∆Dq

α
q “ H2α

pΩq XHα
0 pΩq
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with equivalent norms, see Cholewa and D lotko [10, Page 29] and Henry [20, Pages 29 and
30].

With this notation, we have X´α “ pXαq1 for all α ą 0, see Amann [3] for the characteri-
zation of the negative scale.

The scale of fractional power spaces tXαuαPR associated with AD safisty

Xα
Ă H2α

pΩq, α P r0, 1s,

where H2αpΩq are the potential Bessel spaces, see Cholewa and D lotko [10, Page 48].
From Sobolev embedding theorem, we obtain

Xα
Ă LrpΩq, for any r ď

2N

N ´ 4α
, 0 ď α ă

N

4
,

X “ L2
pΩq,

LspΩq Ă Xα, for any s ě
2N

N ´ 4α
, ´

N

4
ă α ď 0,

with continuous embeddings.
Let α P p0, 1s. We recall that the fractional powers of the negative Laplacian operator can

be calculated through the spectral decomposition: since X “ L2pΩq is a Hilbert space and
A “ ´∆D with zero Dirichlet boundary condition in Ω is a self-adjoint operator and is the
infinitesimal generator of a C0-semigroup of contractions on X, it follows that there exists
an orthonormal basis composed by eigenfunctions tϕjujPN of A. Let νj be the eigenvalues of
A “ ´∆D, then pναj , ϕjq are the eigenvalues and eigenfunctions of Aα “ p´∆Dq

α, also with
zero Dirichlet boundary condition, respectively.

It is well know that the fractional Laplacian Aα : DpAαq Ă X Ñ X is well defined in the
space

DpAαq “ Xα
“

!

u “
8
ÿ

j“1

ajϕj P L
2
pΩq :

8
ÿ

j“1

a2jν
2α
j ă 8

)

,

where

Aαu “
8
ÿ

j“1

ναj ajϕj, u P DpAαq “ Xα.

Finally, we apply all our results from previous sections to boundary-initial value problem
of the type

#

B3t u` p´∆Dqu` p´∆Dq
θB2t u` p´∆Dq

%Btu “ 0, x P Ω, t ą 0,

upx, 0q “ u0pxq, Btupx, 0q “ u1pxq, B
2
t upx, 0q “ u2pxq, x P Ω, t ą 0.

5. Acknowledgments

The authors would like to thank the anonymous referees for their comments and sugges-
tions which greatly improved the work.



26 F. D. M. BEZERRA, A. N. CARVALHO, L. A. SANTOS, AND C. R. TAKAESSU JR.

References
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