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Abstract
In general, global attractors are composed of isolated invariant sets and the connections
between them. This structure can possibly be highly complex, encompassing attraction
basins, repeller sets and invariant sets that, collectively, form a dynamical landscape.
Lotka–Volterra systems have long been pivotal as preliminary models for dynamics in
complex networks exhibiting pairwise interactions. In scenarios involving Volterra–
Lyapunov (VL) stable matrices, the dynamics is simplified in such a way that the
positive solutions converge to a single, globally asymptotically stable stationary point
as time tends to infinity, thereby excluding the existence of periodic solutions. In
this work, we conduct a systematic study on the emergence of heteroclinic cycles
within Lotka–Volterra systems characterized by Volterra–Lyapunov stable matrices.
Although VL stability of the matrix implies that ω-limit sets of solutions are always
stationary points, our analysis of α-limit sets reveals finite sets of stationary points
interconnected by global trajectories, forming structures referred to as heteroclinic
cycles. Our findings indicate that even within the framework of VL stable matrices,
such structures are more prevalent than previously thought in literature, driven by
the interplay between the symmetric and antisymmetric components of the model
matrix. This understanding also reinforces our comprehension of the classical three-
dimensional May–Leonard model, which is known to be the unique case exhibiting
heteroclinic cycle within the VL framework in dimension three, while also pointing
to a surprising richness in the dynamics of these structures in higher dimensions.
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1 Introduction

One of the most significant problems in modern dynamical systems theory is to
describe in detail the structure of the invariant sets of a system. The largest of the
bounded invariant sets for dissipativemodels is the global attractor (Babin andVishik
1992; Hale 1988; Henry 1981; Ladyzhenskaya 1991; Robinson 2001; Temam 1997),
which determines the dynamics of a phenomenon and has the capability to describe
the entire behavior, both transient and asymptotic, of the associated solutions. Addi-
tionally, when we can characterize the geometric structure of the global attractor in a
model governed by ordinary or partial differential equations, we obtain the complete
qualitative information of the phenomenon. The study of this structure has received
much attention in recent decades (Aragão-Costa et al. 2011; Babin and Vishik 1992;
Hale et al. 2002; Carvalho et al. 2013; Joly and Raugel 2010), despite the difficulties
in obtaining a full description of these sets. A global attractor is generically com-
posed of isolated invariant sets and connections between them (Carvalho et al. 2013;
Robinson 2001; Bortolan et al. 2020), allowing us to divide the states within this set
into recurrent and gradient points (Conley 1978; Norton 1995). Recurrent points are
those where the dynamics returns repeatedly through finite chains of solutions and are
typically related to chaotic dynamics, very sensitive to initial conditions; on the other
hand, gradient points are those through which solutions connect the different invariant
sets present in the attractor. These invariant sets are generally composed precisely of
recurrent states. As we can observe, the structure of the attractor may possess high
complexity, with diverse zones, attraction basins, repeller sets, and invariant sets that
create a true landscape of dynamic information (Carvalho et al. 2025).

On the other hand, for many decades, Lotka–Volterra systems have been studied
as a first approximation model for dynamics in a complex network of pairwise node
interactions. The model reads as:
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u̇i = ui

⎛
⎝bi +

N∑
j=1

ai j u j

⎞
⎠ for i = 1, . . . , N ,

with b = (b1, . . . , bN ) ∈ R
N representing the intrinsic growth rates of N species and

A = (ai j )
N
i, j=1 ∈ R

N×N is the associated interaction matrix.
One of the cases in which the dynamics appears to be simpler is the case of

Volterra–Lyapunov (VL) stable matrices A (see Definition 3.1), in which the asymp-
totic behavior of positive solutions ends in a single stationary point, which is globally
asymptotically stable (at least) within the set of strictly positive solutions (Takeuchi
1996). This fact prevents, for example, the existence of periodic solutions for the
model. However, as we described above, the global attractor is not primarily com-
posed of attracting invariant sets (such as a globally asymptotically stable stationary
points) but, for instance, in the case of gradient systems (Hale 1988; Robinson 2001;
Carvalho et al. 2013; Bortolan et al. 2022), the attractor is described as the union of the
unstable manifolds associated with the invariant sets, which means that the attractor
may possess significant repulsion basins within it. In this work it is precisely this fact
of considering the dynamics within the global attractor as time progresses towards
minus infinity that makes it possible to detect new invariant sets of recurrent points
beyond the stationary points of the system. In this way, we describe the appearance
of heteroclinic cycles (Afraimovich et al. 2008; Hofbauer 1994; Guckenheimer and
Holmes 1988; Krupa 1997) (also called homoclinic structures Bortolan et al. (2020),
Definition 3.16) for Lotka–Volterra systems with VL stable matrices. As we have
indicated, this latter hypothesis implies that the ω-limit sets of particular solutions are
always stationary points. However, as we detail in this work, the analysis of the α-limit
sets allows us to observe the emergence of finite sets of stationary points connected
by global trajectories forming a cyclic structure. These recurrent heteroclinic struc-
tures, even in the case of VL stable matrices, are much more common than previously
thought in the literature, and are related to, as we demonstrate, a balance between the
symmetric and antisymmetric parts of the model matrix (see Sect. 5). Note that the
presence of a heteroclinic cycle produces dynamics significantly more complex than
in the case of the equilibria connected by heteroclinic solutions in a directed acyclic
graphwhich could lead to a better understanding of real complex phenomena in nature
(see May and Leonard (1975)). This is why it is so important to describe in detail the
geometrical properties of a global attractor. ln general, due to the presence of invari-
ant subspaces in which the solutions that constitute the cycle lie, these complicated
structures may be structurally stable, i.e., they are robust under perturbation (Guck-
enheimer and Holmes 1988; Lohse 2023; Krupa 1997; Bortolan et al. 2020, 2022).
Our observations lead us to revisit a classic May–Leonard model (May and Leonard
1975; Chi et al. 1998) in three dimensions, in which a heteroclinic cycle of the three
unique stationary points with one non-zero component appears. While our analysis
demonstrates that the May–Leonard model is the only case in three dimensions where
we can find such a cycle (Theorem 4.2), for higher dimensions, the dynamical richness
of these models will appear surprising, allowing the presence of heteroclinic cycles of
arbitrary sizes, between equilibria with a high number of present species, and possibly
containing connections between equilibria with different numbers of species.
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Aswe previouslymentioned, Volterra–Lyapunov stablematrices are very important
when working with Lotka–Volterra models, because of the simpler dynamics in the
global attractor. These matrices include diagonally dominant matrices, which in gen-
eral are expected in ecological systems, where a species has a stronger interaction with
itself than with other species. Several results exist to help finding out if a given matrix
is Volterra–Lyapunov stable (Kraaijevanger 1991; Redheffer 1985; Cross 1978), and
even models not related to ecology can be studied using Volterra–Lyapunov stability
(Mayengo 2023; Chien and Shateyi 2021). In this work, we also give a constructive
characterization of VL stable matrices, that helps with the task of generating them,
and study the associated LV system. In Sect. 5.1, we provide a numerical approach to
discover if a given matrix is VL stable or not.

2 ˛-limits of semigroups

In this section we discuss important results regarding the behavior and structure of
α-limits of global solutions for abstract semigroups in metric spaces. To that end, we
consider T = {T (t) : t � 0} a semigroup in a metric space (X , d), that is, a family
of continuous maps T (t) : X → X indexed in t � 0, satisfying:

◦ T (0)x = x for all x ∈ X ;
◦ T (t + s) = T (t)T (s) for all t, s � 0;
◦ the map [0,∞) × X � (t, x) �→ T (t)x ∈ X is continuous.

When T = {T (t) : t ∈ R}, T (0)x = x for all x ∈ X , T (t + s) = T (t)T (s) for all
t, s ∈ R and the map R × X � (t, x) �→ T (t)x ∈ X is continuous, we say that T is a
group. In this case, note that T (t) is invertible and T (t)−1 = T (−t) for all t ∈ R.

For a semigroup T in X , the ω-limit of a point x ∈ X is the set defined by

ω(x) = {y ∈ X : there exists tn → ∞ such that T (tn)x → y}.

A global solution of the semigroup T is a continuous function ξ : R → X such that
T (t)ξ(s) = ξ(t + s) for all t � 0 and s ∈ R. We say that ξ is bounded if the set ξ(R)

is bounded in X . For a given global solution ξ of T in X , the α-limit of ξ is the set
defined by

α(ξ) = {
y ∈ X : there exists sn → −∞ such that ξ(sn) → y

}
.

To see different, but equivalent, definitions of the ω and α-limits, see Bortolan et al.
(2020, Proposition 1.13).

We recall that a subsetA of X is called a global attractor for the semigroup T if:

◦ A is compact;
◦ A is invariant, that is, T (t)A = A for all t � 0;
◦ A attracts bounded subsets of X , that is, given B ⊂ X , a bounded set, we have

dH (T (t)B,A) → 0 as t → ∞,
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where

dH (U , V ) = sup
u∈U

inf
v∈V

d(u, v)

denotes the Hausdorff semidistance between the nonempty sets U , V ⊂ X .

Clearly, when a semigroup T has a global attractor A, it is unique. Furthermore, in
this case,

A = {ξ(0) : ξ is a bounded global solution of T }.

We now recall a usual result regarding the properties of both α and ω-limits. For a
proof see Bortolan et al. (2020, Lemmas 1.15 and 1.16), for instance.

Lemma 2.1 If the semigroup T has a global attractor, then for each bounded global
solution ξ of T , its α-limit α(ξ) is nonempty, compact, invariant and

dH (ξ(s), α(ξ)) → 0 as s → −∞.

Also, for each x ∈ X its ω-limit ω(x) is nonempty, compact, invariant and

dH (T (t)x, ω(x)) → 0 as t → ∞.

A point e∗ is called an equilibrium for T if T (t)e∗ = e∗ for all t � 0. In the
next result we prove that if every ω-limit contains an equilibrium, then so does every
α-limit.

Lemma 2.2 Assume that T is a semigroup with a global attractor A and a nonempty
set of equilibria E . If for each x ∈ X we have ω(x) ∩ E �= ∅, then for any bounded
global solution ξ of T we have α(ξ) ∩ E �= ∅.

Proof By Lemma 2.1, α(ξ) is nonempty and we choose any x ∈ α(ξ). If x ∈ E the
proof is over. Otherwise, again by Lemma 2.1, since α(ξ) is compact and invariant it
must contain ω(x). Since ω(x) ∩ E �= ∅, the proof is complete. �


A global solution ξ : R → X is called stationary if ξ(t) = e∗ for all t ∈ R, where
e∗ is an equilibrium of T . We say that ξ is nontrivial if it is not a stationary global
solution.

For δ > 0 and x ∈ X , Bδ(x) (Bδ(x)) denotes the closed (open) ball in X with
radius δ centered at x . We say that an equilibrium e∗ of T is an isolated equilibrium
if there exists δ > 0 such that if e∗ ⊂ E ⊂ Bδ(e∗) and E is an invariant set, then
E = {e∗}. We also say that e∗ is the maximal invariant set in Bδ(e∗).

Lemma 2.3 Let e∗ be an equilibrium of T , and assume that e∗ is the maximal invariant
set in Bδ(e∗). If ξ is a global solution of T in X with d(ξ(t), e∗) � δ for all t � 0
(t � 0), then

ξ(t) → e∗ as t → −∞ (t → ∞).
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Proof We prove only the t � 0 case, and the other follows analogously. Since ξ(t) ∈
Bδ(e∗) for all t � 0, we have α(ξ) ⊂ Bδ(e∗). Hence

e∗ ⊂ {e∗} ∪ α(ξ) ⊂ Bδ(e
∗),

and the maximality of e∗ shows that α(ξ) ⊂ {e∗}. Since, from Lemma 2.1, α(ξ) �= ∅,
we obtain α(ξ) = {e∗}. Using again Lemma 2.1, we obtain ξ(t) → e∗ as t → −∞. �

Lemma 2.4 Let e∗ be an equilibrium of T . Given � > 0 and ε > 0, there exists
0 < μ < ε such that T (t)Bμ(e∗) ⊂ Bε(e∗) for all t ∈ [0, �].

Furthermore, assuming that T has a global attractor A and that

if x ∈ A and T (t)x = e∗ for some t > 0 we have x = e∗, (2.1)

then if d(xn, e∗) � ε, with xn ∈ A and ε > 0, and tn � 0 is such T (tn)xn → e∗, we
have tn → ∞.

Proof To prove the first assertion, notice, that if that is not the case, there exist � > 0,
ε > 0, and sequences xn → e∗ and tn ∈ [0, �] such that d(T (tn)xn, e∗) � ε for all
n ∈ N. Since [0, �] is compact, up to a subsequence, we can assume that tn → t0 ∈
[0, �]. Hence T (tn)xn → T (t0)e∗ = e∗, which gives us a contradiction.

For the second claim, if some subsequence of {tn}n∈N is bounded, then up to a
subsequence of this subsequence (which we name the same) we have tn → t0 for
some t0 � 0. Since {xn}n∈N ⊂ A, up to a subsequence we have xn → x ∈ A. Hence
x �= e∗, thus t0 > 0 and T (t0)x = e∗, which contradicts (2.1). �


Before continuing, we present a slightly simplified version of a crucial result from
Bortolan et al. (2020).

Lemma 2.5 (Bortolan et al. 2020, Lemma 2.4) Assume that T has a global attractor
A. Let an < bn < cn be such that bn −an → ∞, cn −bn → ∞, and set Jn = [an, cn].
Let ξn : Jn → X be a solution of T and assume that

∪n∈Nξn(Jn) is bounded.

Then there exists a subsequence {ξnk } of {ξn} and a bounded global solution φ : R →
X of T such that ξnk (t + bnk ) → φ(t), uniformly for t in compact subintervals of R.

With these lemmas we can present the main result of this section.

Theorem 2.6 Assume that T has a global attractor A and let ξ be a bounded global
solution of T . Assume also that there exists an isolated equilibrium e∗ ∈ α(ξ),
satisfying (2.1), and a point x ∈ α(ξ), with x �= e∗.

Then there exist nontrivial bounded global solutions φ and ψ of T with

φ(t) → e∗ as t → −∞ and ψ(t) → e∗ as t → ∞.

Furthermore, φ(t), ψ(t) ∈ α(ξ) for all t ∈ R.
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Proof We fix δ > 0 such that

B2δ(x) ∩ B2δ(e
∗) = ∅.

We can choose δ > 0 sufficiently small so that e∗ is the maximal invariant set in
Bδ(e∗). Hence, there exists a strictly decreasing sequence {sn}n∈N, with sn → −∞,
such that

d(ξ(sn), e∗) < 1
n for all n ∈ N,

and there exists �n ∈ (sn+1, sn) such that d(ξ(�n), e∗) > 2δ.

Claim 1. �n − sn+1 → ∞.
If {�n − sn+1}n∈N is bounded then �n − sn+1 � � for some � > 0. Thus, from

Lemma 2.4, there exists μ > 0 such that T (t)Bμ(e∗) ⊂ Bδ(e∗) for all t ∈ [0, �]. For
all n large, we have ξ(sn+1) ∈ Bμ(e∗) and thus ξ(�n) = T (�n − sn+1)ξ(sn) ∈ Bδ(e∗),
which is a contradiction.

Claim 2. sn − �n → ∞.
Since T (sn − �n)ξ(�n) = ξ(sn) → e∗, and ξ(�n) ∈ A is such that d(ξ(�n), e∗) >

2δ, this follows directly from Lemma 2.4.
Construction of φ. For each n ∈ N we can choose τn ∈ [sn+1, �n) such that

d(ξ(s), e∗) < δ for s ∈ [sn+1, τn),

and d(ξ(τn), e∗) = δ. Note that τn → −∞, and it follows from Lemma 2.4 that
τn − sn+1 → ∞. Using Lemma 2.5, with an = sn+1, bn = τn and cn = sn , we obtain
a bounded global solution φ of T in A such that, up to a subsequence,

ξ(t + τn) → φ(t) for all t ∈ R.

Clearly, from the definition of α(ξ), we have φ(t) ∈ α(ξ) for all t ∈ R. Note that for
t = 0 we have

d(φ(0), e∗) = lim
n→∞ d(ξ(τn), e∗) = δ,

which means that φ(0) �= e∗. Moreover, given t � 0, for n sufficiently large we have
t + τn ∈ [sn+1, τn), which implies that

d(ξ(t + τn), e∗) < δ ⇒ d(φ(t), e∗) � δ.

This shows that d(φ(t), e∗) � δ for all t � 0. From Lemma 2.3 we obtain

φ(t) → e∗ as t → −∞.

Since φ(0) �= e∗ and φ(t) → e∗ as t → −∞ we obtain that φ is a nontrivial global
solution of T .
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Construction of ψ . For each n ∈ N we can choose γn ∈ (�n, sn] such that

d(ξ(s), e∗) < δ for s ∈ (γn, sn],

and d(ξ(γn), e∗) = δ. Note that γn → −∞, and it follows from Lemma 2.4, with
xn = ξ(γn) and tn = sn − γn , that sn − γn → ∞. Using Lemma 2.5, with an = sn+1,
bn = γn and cn = sn , we obtain a bounded global solution ψ of T in A such that, up
to a subsequence,

ξ(t + γn) → ψ(t) for all t ∈ R.

From the definition of α(ξ), we have ψ(t) ∈ α(ξ) for each t ∈ R. For t = 0 we have

d(ψ(0), e∗) = lim
n→∞ d(ξ(γn), e∗) = δ.

For t � 0 given, for n large we have t + γn ∈ (γn, sn] and thus

d(ξ(t + γn), e∗) < δ ⇒ d(ψ(t), e∗) � δ.

This shows that d(ψ(t), e∗) � δ for all t � 0 and from Lemma 2.3 we obtain

ψ(t) → e∗ as t → ∞.

Since ψ(0) �= e∗ and ψ(t) → e∗ as t → ∞ it follows that ψ is a nontrivial global
solution of T . �


3 N-dimensional Lotka–Volterra systems

Consider the N -dimensional Lotka–Volterra system

u̇i = ui

⎛
⎝bi +

N∑
j=1

ai j u j

⎞
⎠ for i = 1, . . . , N , (LotV)

with b = (b1, . . . , bN ) ∈ R
N representing the intrinsic growth rates of N species and

A = (ai j )
N
i, j=1 ∈ R

N×N representing their crossed interaction rates. We define the
phase space:

C+ = {x = (x1, . . . , xN ) ∈ R
N : xi � 0 for i = 1, . . . , N }.

3.1 Volterra–Lyapunov stable matrices

We are particularly interested in Lotka–Volterra systems with matrices A that are
Volterra–Lyapunov stable, accordingly to the following definition (for a more detailed
study on matrix stability see Logofet (2005)).
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Definition 3.1 A real matrix A ∈ R
N×N is said to be Volterra–Lyapunov stable

(VL stable, for short) if there exists a matrix H = diag(hi ) with hi > 0 such that
H A + AT H is stable, that is, all of its eigenvalues are negative. The set of VL stable
matrices is denoted in the literature by Sw.

The Lotka–Volterra system (LotV), when A is VL stable, has several important
stability properties that will be stated in this section. We start with a new result of
characterization of VL stable matrices.

Proposition 3.2 The matrix A ∈ R
N×N is VL stable if and only if A can be written in

the form

A = H(S + J ),

where H = diag(hi ), with hi > 0 for i = 1, . . . , N, S is a symmetric stable matrix
in R

N×N , and J is an antisymmetric matrix in R
N×N .

Proof If A is in this form, it is easy to see that H−1A + AT H−1 = 2 S, which is
stable. Hence A is VL stable. Conversely, if A is VL stable, there exists H = diag(hi )

with hi > 0, such that S := ( H−1

2 )A + AT ( H−1

2 ) is stable and symmetric. Thus we
can write:

A = H

(
H−1

2
A + AT H−1

2
+ H−1

2
A − AT H−1

2

)
= H(S + J )

with J = ( H−1

2 )A − AT ( H−1

2 ), an antisymmetric matrix. �

Remark 3.3 The importance of this characterization resides in the fact that it is easy to
create (or randomly computationally generate) a symmetric stable matrix S, a positive
diagonal matrix H and an antisymmetric matrix J , which enables us to computation-
ally study the possible behaviors we might find in the dynamics of (LotV), when A
is VL stable. This will be further discussed in Sect. 5.2. The task of determining if a
given matrix is VL stable will be explored in Sect. 5.1.

From Almaraz et al. (2024, Theorem 8), we have the following:

Proposition 3.4 For each u0 ∈ C+, the problem (LotV) with initial data u0 has a
unique globally defined solution u(t, u0) which is a continuous function of time and
the initial data. Hence, (LotV) generates a group T = {T (t) : t ∈ R} in C+ defined
by T (t)u0 = u(t,u0) for each t ∈ R and u0 ∈ C+. Moreover, if A is VL stable then
T has a global attractor A.

We also make the following definitions:

C+ = int C+ = {x = (x1, . . . , xN ) ∈ R
N : xi > 0 for i = 1, . . . , N }.

If J ⊂ {1, . . . , N } we define

C J+ = {x ∈ C+ : xi > 0 for i ∈ J }.
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Given x ∈ C+, we define J (x) = {i ∈ {1, . . . , N } : xi > 0} and

C J (x)
+ = {y ∈ C+ : yi > 0 for i ∈ J (x)}.

For thematrix A, given J = {i1, . . . , im} ⊂ {1, . . . , N }, with i1 < i2 < · · · < im , then
the principal submatrix of A associated with J is the matrix A(J ) = (ai�i p )

m
�,p=1.

Also, for a column matrix b = (bi )
N
i=1 we define b(J ) = (bi� )

m
�=1.

Definition 3.5 Assume that A is VL stable. The set (which we also call community)
I ⊂ {1, . . . , N } is admissible if there exists an equilibrium u∗ = (u∗

1, . . . , u∗
N ) ∈ C+

of (LotV) with u∗
i > 0 if and only if i ∈ I . The family of all admissible communities

will be denoted by C ⊂ 2{1,...,N }.
We denote the unique equilibrium associated with the admissible community I

by uI , and if u∗ is an equilibrium of (LotV), we denote the associated admissible
community by I (u∗).

Remark When the matrix A is VL stable, it follows from Takeuchi (1996, Lemma
3.2.1 and Lemma 3.2.2) that for each admissible community I ⊂ {1, . . . , N } there
exists a unique associated equilibrium uI .

Let I ∈ C and uI = (u∗
1, . . . , u∗

n) its associated equilibrium. Following Chesson
(1994) and Barabás et al. (2018), we define the invasion rate of the species i ∈
{1, . . . , N } on the community I by

ri (I ) = bi +
∑
j∈I

ai j u
∗
j .

We use the convention ri (∅) = bi for each i ∈ {1, . . . , N }. See Almaraz et al. (2024)
for a detailed interpretation of the invasion rates.

Following Hofbauer and Schreiber (2022), we present the construction of the
invasion graph (IG) and its relations to the heteroclinic connections of (LotV).

Algorithm 3.6 (Invasion graph - IG) The IG is constructed by the following steps:
(Step 1) The set of vertices of IG is C , that is, the vertices are the admissible

communities.
(Step 2) IG contains the edge from I to J (denoted by I → J ) if and only if I �= J ,

r j (I ) > 0 for every j ∈ J\I , and ri (J ) < 0 for every i ∈ I \ J .

Wenowpresent the definition of the connection graph (CG), which provides direct
information about the asymptotic dynamics of (LotV):

Definition 3.7 (Connection graph - CG) The set of vertices of the CG is C , that is, the
admissible communities. The edge I → J exists in the CG if and only if I �= J and
there exists a bounded global solution ξ of (LotV) such that

uI t→−∞←− ξ(t)
t→∞−→ uJ .

123



A theoretical and computational study of heteroclinic cycles… Page 11 of 31 28

The authors in Almaraz et al. (2024) showed the following relation between IG and
CG:

Proposition 3.8

(a) If A is VL stable, then IG is a subgraph of CG.
(b) If ri (J ) �= 0 for i /∈ J and J ∈ C (that is, all equilibria are hyperbolic), then CG

is a subset of IG.

Remark The hyperbolicity of the equilibria stated in item (b) of the proposition above
follows from the results of Almaraz et al. (2024, Section 3). In summary, for J ∈ C ,
the linearization of the Lotka–Volterra system around uJ is of the form

w′ =
(

B11 B12

0 B22

)
w,

where the spectrum of B11 lies in {λ ∈ C : Re λ < 0}, and B22 is a diagonal matrix
with B22

i i = ri (J ). Hence, when all ri (J ) are nonzero, the equilibria are hyperbolic.

It is important to mention that CG represents the dynamical information of (LotV)
in its phase space, and is contained inside the global attractor A of (LotV), when
it exists. Meanwhile, IG uses only the invasion rates of (LotV), that can be easily
calculated, and still it can be equal to the CG, revealing essential information about
A.

To begin with the discussion regarding the dynamical properties of (LotV), from
Takeuchi (1996, Theorem 3.2.1) we draw the following result:

Proposition 3.9 If A is VL stable then for anyb ∈ R
N , there exists a unique equilibrium

u∗ ∈ C+ of (LotV) which is globally asymptotically stable, in the sense that for each
u0 ∈ C J (u∗)

+ we have T (t)u0 → u∗ as t → ∞. This u∗ is called the GASS (the
acronym of Globally Asymptotically Stable Solution) of (LotV).

Moreover, for any set J = {i1, . . . , im} ⊂ {1, . . . , N }, with i1 < i2 < · · · < im,
such that J (u∗) ⊂ J , the point y ∈ R

m defined by y� = u∗
� for � = 1, . . . , m

is the GASS of the m-dimensional (LotV) with A(J ) and b(J ) replacing A and b,
respectively.

From now on, unless clearly stated otherwise, we assume that

A is VL stable.

Corollary 3.10 If u∗ ∈ C+ (that is, all its coordinates are strictly positive) is an
equilibrium of (LotV), then u∗ is theGASS of (LotV). In other words, if the community
I = {1, 2, . . . , N } is admissible, then uI is the GASS of (LotV).

Remark In the previous corollary we state thatwhen u∗ ∈ C+ then it is the GASS of the
system. However, this is not what happens in general, specially for high–dimensional
systems, in which the GASS might possess some (or even most) zero coordinates.
In what follows, we do not assume that the GASS of the system has all positive
coordinates.
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Note that, since (LotV) generates a group T , each equilibrium of T satisfies (2.1).
If u∗

G is the GASS of (LotV), we know that u∗
G is a local attractor with a given basin

of attraction B in A. Its associated repeller is defined by

R = {
u0 ∈ A : u∗

G �= ω(u0)
}
,

(note that for every u0 ∈ C+ the set ω(x) is a singleton). We have the following
properties:

◦ C+ ⊂ B. This follows from Proposition 3.9, since C+ ⊂ C
J (u∗

G)

+ .
◦ R∩B = ∅. In fact, if u0 ∈ B then it follows from Proposition 3.9 that T (t)u0 →
u∗
G.◦ R∪B = A. Indeed, ifu0 ∈ A thenω(u0) is eitheru∗

G or it is a different equilibrium
of (LotV), which means that u0 is either in B or inR.

◦ R is closed in A and, hence, B is open in A. This follows from Bortolan et al.
(2020, Lemma 3.27).

Also it is clear that every equilibrium of (LotV), other than u∗
G, is inR.

Definition 3.11 Given a bounded global solution ξ of (LotV), we define its dimension
dim ξ , as the number d ∈ {0, 1, . . . , N } of positive coordinates of ξ(t), for any given
t ∈ R (which, by invariance, does not depend on the choice of t ∈ R). When ξ is
stationary, that is, ξ(t) = u∗ for all t ∈ R where u∗ is an equilibrium of (LotV), the
dimension d of ξ will be also referred to as the dimension of u∗.

Lemma 3.12 For any nontrivial bounded global solution ξ of (LotV) in B we have
α(ξ) ⊂ R.

Proof Assume that x ∈ α(ξ) and x /∈ R. Hence x ∈ B. There exists an strictly
decreasing sequence sn → −∞, with sn − sn+1 > n, such that ξ(sn) → x. Since
x ∈ B and B is open in A there exists η > 0 such that ξ(sn) ∈ Bη(x) ∩ A ⊂ B.
Therefore

dH (T (t)(Bη(x) ∩ A),u∗
G) → 0 as t → ∞.

Thus

dH (ξ(sn),u∗
G) = dH (T (sn − sn+1)ξ(sn+1),u∗

G) → 0 as n → ∞,

and since ξ(sn) → x, we obtain x = u∗
G. Therefore ξ(sn) → u∗

G as n → ∞. Since
u∗
G is a local attractor, there exists a neighborhood U of u∗

G such that T (t)U ⊂ U for
all t � 0. We can choose U such that u∗

G is a maximal invariant set in U . Now if
t ∈ R we can choose n large so that sn < t and ξ(sn) ∈ U (since ξ(sn) → u∗

G). Thus
ξ(s) ∈ U for all s � sn and, in particular, ξ(t) ∈ U . Since this works for each t ∈ R

we obtain ξ(t) ∈ U for all t ∈ R. But ξ(R) ⊂ U and ξ(R) is invariant. Since u∗
G is

the maximal invariant set in U we obtain ξ(t) = u∗
G for all t ∈ R, which contradicts

the fact that ξ is a nontrivial solution. �
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Theorem 3.13 Let ξ be a bounded global solution of (LotV) in B. Assume that there
exist x,u∗ ∈ α(ξ) where u∗ is an equilibrium of (LotV) and x �= u∗. Then

(a) there exist nontrivial bounded global solutions φ,ψ in A such that

φ(t) → u∗ as t → −∞ and ψ(t) → u∗ as t → ∞,

with φ(t), ψ(t) ∈ R for each t ∈ R;
(b) 0 < dim u∗ < dim ξ ;

Proof Clearly ξ has to be a nontrivial solution, otherwise α(ξ) would be a singleton.
Since u∗ ∈ α(ξ)we have dim u∗ � dim ξ , from the invariance ofC J (ξ(0))

+ . If dim u∗ =
dim ξ , then u∗ is in C J (ξ(0))

+ and it is the GASS of (LotV) restricted to C J (ξ(0))
+ . This

implies that there exist small neighborhoodsU andV ofu∗ inC J (ξ(0))
+ ,withU ⊂ V and

x /∈ V , such that T (t)U ⊂ V for all t � 0. Since x,u∗ ∈ α(ξ), we can choose s2 < s1
such that ξ(s2) ∈ U and ξ(s1) /∈ V . Then ξ(s1) = T (s1−s2)ξ(s2) ∈ T (s1−s2)U ⊂ V ,
which gives us a contradiction. The item (a) follows directly from Theorem 2.6 and
Lemma 3.12.

(b) Since the stable manifold of the equilibrium 0 = (0, . . . , 0) is trivial, we cannot
have u∗ = 0 hence dim u∗ > 0. �

Theorem 3.14 Let ξ be a bounded global solution of (LotV) in B and assume that
α(ξ) is not a singleton. Then the dimension of any equilibrium belonging to α(ξ) is
between 1 and d − 2, where d = dim ξ .

Proof From Lemma 2.2 there exists at least an equilibrium of (LotV) in α(ξ). Let u∗
be any such equilibrium. From the hypotheses, we can choose x �= u∗ with x ∈ α(ξ).
From Theorem 3.13 there exists a nontrivial bounded global solution φ of (LotV) in
R such that φ(t) → u∗ as t → −∞ and φ(t) ∈ α(ξ) for each t ∈ R. Moreover,
0 < dim u∗ < d and u∗ ∈ R. We know that every equilibria in R has dimension at
most d − 1. Since every equilibrium in R with dimension d − 1 must be the GASS
of a (d − 1)-dimensional Lotka–Volterra system (contained inR), the existence of φ

shows that the dimension of u∗ is at most d − 2. �

By a heteroclinic cycle in the global attractor of (LotV) we mean collections of

equilibria u∗
1, . . . ,u

∗
m and nontrivial bounded global solutions ξ1, . . . , ξm of (LotV)

such that, for u∗
m+1 := u∗

1, we have

u∗
i

t→−∞←− ξi (t)
t→∞−→ u∗

i+1, for i = 1, . . . , m.

FromBortolan et al. (2020), we know that a semigroup T , in a metric space X , with
a global attractor A and a finite collection of equilibria E = {u∗

1, . . . , u∗
n} is called

dynamically gradient with respect to E if there are no heteroclinic cycles in A (in
the sense of the definition above) and for each bounded global solution ξ of T there
exists u∗

i , u∗
j ∈ E such that

u∗
i

t→−∞←− ξi (t)
t→∞−→ u∗

j .
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We say that T is gradient with respect to E is there exists a continuous function
V : X → R such that

◦ the map [0,∞) � t �→ V (T (t)x) ∈ R is nonincreasing for each x ∈ X ;
◦ V (T (t)x) = V (x) for all t � 0 if and only if x ∈ E .

We know from Bortolan et al. (2020, Theorem 3.41) that a semigroup T is gradient
with respect to E if and only if T is dynamically gradient with respect to E .

Corollary 3.15 Consider N � 3 and assume that there are no heteroclinic cycles in
the global attractor of (LotV). Then, for each bounded global solution ξ of (LotV),
α(ξ) consists of a unique equilibrium of (LotV). In particular, the group generated by
(LotV) is gradient with respect to its equilibria.

Proof From Lemma 2.2, it follows that α(ξ) contains an equilibrium of (LotV), which
we name u∗

1. If either ξ is a stationary solution or dim ξ � 2, we already know that
α(ξ) = {u∗

1}.
Assume, by contradiction, that there exists x �= u∗

1 with x ∈ α(ξ) and that dim ξ �
3. We restrict ourselves to the (dim ξ)-dimensional (LotV) system of which ξ is a
bounded global solution, which we name (LotV) again. Thus, for this system, ξ lies
in the positive cone C+. From Theorem 3.13 there exists a nontrivial bounded global
solution φ of (LotV) inR such that φ(t) → u∗

1 as t → −∞ and φ(t) ∈ α(ξ) for each
t ∈ R. We know that for some equilibrium u∗

2 of (LotV), φ(t) → u∗
2 as t → ∞. Since

α(ξ) is compact we obtain u∗
2 ∈ α(ξ). Also, since φ is nontrivial and converges to u∗

1
as t → −∞, we have u∗

2 �= u∗
1 (for otherwise, φ would be a homiclinic solution, that

is, the simplest heteroclinic cycle).
Using Theorem 3.13 for u∗

2 we obtain a nontrivial bounded global solution φ2 such
that φ2(t) → u∗

2 as t → −∞ with φ2(t) ∈ α(ξ) for each t ∈ R. As before, for some
equilibria u∗

3 of (LotV) we have φ2(t) → u∗
3 as t → ∞, u∗

3 ∈ α(ξ), and u∗
3 �= u∗

2. If
u∗
3 = u∗

1 we have

u∗
1

t→−∞←− φ(t)
t→∞−→ u∗

2
t→−∞←− φ2(t)

t→∞−→ u∗
3 = u∗

1,

which produces a heteroclinic cycle, and gives us a contradiction.
If u∗

3 �= u∗
1, we can analogously proceed with the argument. In a finite number of

steps we produce a heteroclinic cycle (since there is only a finite number of equilibria)
and reach a contradiction.

Thus, we proved that each bounded global solution of (LotV) converges (forward
and backwards) to an equilibrium of (LotV). Therefore, the group generated (LotV)
is gradient with respect to its equilibria. �

Corollary 3.16 If N = 1 or N = 2, the group generated by (LotV) is gradient with
respect to its equilibria.

Corollary 3.17 If all equilibria of (LotV) are hyperbolic and IG has no cycles, then
the group generated (LotV) is gradient with respect to its equilibria. In particular, IG
contains all the dynamical properties of the global attractor A of (LotV).
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Proof From Proposition 3.8 (recall that we are assuming that A is VL stable) it follows
that IG=CG. Hence, if IG has no cycles we obtain that there are no heteroclinic cycles
in the global attractor of (LotV) and the result follows from Corollary 3.15. �

Remark 3.18 The above result allows us to formulate an algorithm that uses an a
posteriori test to determine the structure of the global attractor: we need to build the
IG, and test for cycles. If there are no cycles, it means that we recovered the whole
structure of the global attractor, and thus we captured all the dynamics of the system.

Now assume that there exists a heteroclinic cycle

u∗
i

t→−∞←− ξi (t)
t→∞−→ u∗

i+1 for i = 1, . . . , m,

with u∗
m+1 := u∗

1, and all the equilibria in this heteroclinic cycle are distinct. Let

Wi := C J (ξi (0))+ , that is, the “wall” in which the global solution ξi lies (which is the
same for ξi (t) for all t ∈ R, due to the invariance). We have the following:

(i) u∗
i+1 is the GASS of Wi , since ξi (0) ∈ Wi and ξi (t) → u∗

i+1 as t → ∞.
(ii) Wi ∩ W j = ∅ for i �= j .
(iii) u∗

i+1 ∈ Wi \ Wi , hence dim u∗
i+1 < dim Wi . (It is clear that u∗

i+1 ∈ Wi since
Wi � ξi (t) → u∗

i+1 as t → ∞. On the other hand, since Wi+1 � ξi+1(t) → u∗
i+1

as t → −∞, we have u∗
i+1 ∈ Wi+1 and thus u∗

i+1 /∈ Wi .)
(iv) There can be no equilibrium in Wi , because if there was, u∗

i+1 could not be its
GASS.

With this, and Corollary 3.15, we obtain the following result:

Theorem 3.19 If (LotV) possesses maximal frondosity, that is, all the equilibria of the
system are present (or, in other words, all the communities are admissible), then there
are no heteroclinic cycles, the α-limit of every bounded global solution is a singleton
and the group generated by (LotV) is gradient with respect to its equilibria.

3.2 Ensuringmaximal frondosity

We study the situation when we can ensure the maximal frondosity of the invasion
graph.

Theorem 3.20 Assume that for every community J ⊂ {1, . . . , N } the unique solution
u∗

J of the system

−A(J )u = b(J )

has all coordinates strictly positive.
Then (LotV) has maximal frondosity, there are no heteroclinic cycles, the α-limit

of every bounded global solution is a singleton and the group generated by (LotV) is
gradient with respect to its equilibria.

Furthermore, if all equilibria are hyperbolic then I → J if and only if I � J .
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Proof As−A(J ) is nonsingular, the unique solution u∗
J exists for every J . Since it has

all coordinates positive, every community J is admissible and (LotV) has maximal
frondosity. The conclusion comes from Theorem 3.19.

If I → J , then I �= J and there exists a bounded global solution connecting ui

and uJ . Such solution must lie in C I∪J+ , and hence it must converge forward to uI∪J .
Hence uI∪J = uJ , which implies that J = I ∪ J , that is, I � J .

If I � J , since all equilibria are hyperbolic, the values of r j (I ) for j ∈ J\I must
be all strictly positive. If that was not the case, that is, if r j (I ) < 0 for some j ∈ J\I ,

then uI would attract points that are in C I∪{ j}
+ , which is a contradiction because uI∪{ j}

is the equilibrium attract all the points in C I∪{ j}
+ . Therefore, I → J . �


Wediscuss two situations forwhich the assumption of Theorem3.20 holds. Clearly,
one such case is when all intrinsic growth rates b j are positive and the interior of every
positive cone C J+ is invariant under the inverse matrix (−A(J ))−1. The next result
shows that such situation holds if the system is fully cooperative, that is, ai j > 0 for
every i �= j .

Lemma 3.21 Let A be VL stable and fully cooperative, that is ai j > 0 for every i �= j .
Then for every J ⊂ {1, . . . , n} the interior of the positive cone C J+ is invariant by
(−A(J ))−1, that is (−A(J ))−1C J+ ⊂ C J+. In consequence, if only mini=1,...,N bi > 0
the assumption of Theorem 3.20 holds, and (LotV) has maximum frondosity.

Proof We use the results of Chapter 6 of Berman and Plemmons (1994). All off
diagonal entries of −A(J ) are nonpositive, and hence, according to the nomenclature
of Berman and Plemmons (1994), page 132, we have −A(J ) ∈ Z |J |×|J |. Therefore,
the VL stability of A(J ) is equivalent to positivity of (−A(J ))−1 (by equivalence of
H24 and N38 in Berman and Plemmons (1994, Theorem 2.3, p. 134)). This positivity

means that (−A(J ))−1C J+ ⊂ C J+. But since (−A(J ))−1 maps open sets to open sets,

it follows that (−A(J ))−1C J+ = (−A(J ))−1intC J+ ⊂ intC J+ = C J+, and the proof is
complete. �

Remark 3.22 Note that if all bi -s are positive, the assertion of the above lemma holds
under weaker assumption than full cooperativity. It is enough if we assume the inverse

positivity of −A(J ) for every community J : namely that for every cone C J+ we have

(−A(J ))−1C J+ ⊂ C J+.

Another case when the maximal frondosity holds, which may encompass the situation
when the interaction matrix contains the negative off-diagonal entries, is a certain
strong condition of diagonal dominance.

We recall that the row norm of a matrix A ∈ R
N×N is given by

‖A‖r = max
1�i�N

N∑
j=1

|ai j |.
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Theorem 3.23 Assume that b = (b1, . . . , bN ) ∈ R
N is such that min

i=1,...,N
bi > 0 and

that the matrix A = (ai j )
N
i, j=1 ∈ R

N×N is VL-stable and

max
i=1,...,N

∑
j �=i

∣∣∣∣
ai j

a j j

∣∣∣∣ <
1

1 + M
,

where

M =
max

i=1,...,N
bi

min
i=1,...,N

bi
.

Then the assumption of Theorem 3.20 is satisfied, and, in consequence (LotV) has
maximum frondosity.

Proof We choose an arbitrary community J . Consider the equation

−A(J )u = b(J ).

By making the change of variables vi = −aii ui for i ∈ J , the new system has the
same vector b(J ) ∈ R

|J | and A(J ) is replaced by the matrix Ã = −I − P , where
P = (pi j )

|J |
i, j=1 is given by p j j = 0 and pi j = ai j

a j j
for i �= j . Note that ‖P‖r < 1

1+M .
We obtain the system

(I + P(J ))v = b(J ).

Since ‖P(J )‖r � ‖P‖r < 1, this problem has a solution, which we call v∗
J , given by

v∗
J = (I + P(J ))−1b(J ) =

∞∑
n=0

(−P(J ))nb(J ).

Hence

v∗
J − b(J ) =

∞∑
n=1

(−P(J ))nb(J ),

and thus

‖v∗
J − b(J )‖∞ � ‖P(J )‖r

1 − ‖P(J )‖r
‖b(J )‖∞ � ‖P‖r

1 − ‖P‖r
‖b‖∞ < min

i=1,...,N
bi .

This means that all entries of v∗
J are strictly positive and the conclusion follows. �
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4 TheMay–Leonard system revisited

In this section we work with the 3-dimensional (LotV) system, which can be written
as

⎧⎪⎨
⎪⎩

u̇1 = b1u1 + a11u2
1 + a12u2u1 + a13u3u1,

u̇2 = b2u2 + a21u1u2 + a22u2
2 + a23u3u2,

u̇3 = b3u3 + a31u1u3 + a32u2u3 + a33u2
3.

(3D–LotV)

Note that for N = 3, Theorem 3.14 shows that only one-dimensional equilibria
can belong to α(ξ) if ξ is a three-dimensional nontrivial bounded global solution of
(3D–LotV) when α(ξ) is not a singleton. Moreover, the global solutions that belong
to α(ξ) must be two-dimensional (otherwise, either 0 or a 2-dimensional equilibrium
would belong to α(ξ), which contradicts Theorem 3.14). When N = 1 or N = 2,
Theorem 3.14 shows that α-limit of any nontrivial bounded global solution can only
consists of one equilibrium.

Proposition 4.1 Consider the problem (3D–LotV) and assume that A is VL stable
(then (3D–LotV) it has a global attractor). Assume also that there exists a bounded
global solution ξ such that α(ξ) is not a singleton. Then (3D–LotV) has exactly
5 equilibria, namely 0, three 1-dimensional equilibria u∗

1 , u∗
2 and u∗

3 , and one 3-
dimensional equilibrium u∗

G (the GASS of the system). Moreover, α(ξ) is precisely a
heteroclinic cycle connecting u∗

1 , u∗
2 and u∗

3 .

Proof Firstly, note that if either dim ξ < 3 or ξ is stationary, α(ξ) is a singleton.
Hence ξ is a nontrivial bounded global solution with dim ξ = 3, and thus it is in C+.
We refine the reasoning of Corollary 3.15. Let u∗

1 ∈ α(ξ) and x ∈ α(ξ) be such that
x �= u∗

1. We know, from Theorem 3.14 that dim u∗
1 = 1, and from Theorem 3.13 there

exists a nontrivial bounded global solution φ1 of (3D–LotV) such that φ1(t) → u∗
1 as

t → −∞. Furthermore, we can see that φ1 must be two-dimensional.

Let u∗
2 be the GASS of W1 := C J (φ1(0))+ (note that dim W1 = 2). Since u∗

2 ∈ α(ξ)

we know that dim u∗
2 = 1. We know that (3D–LotV) restricted to W1, which is two-

dimensional, is gradient (see Corollary 3.16) and, hence, u∗
2 �= u∗

1. Moreover, W1 does
not have a two-dimensional equilibrium, for otherwise u∗

2 would not be the GASS of
W1.

ApplyingTheorem3.13 foru∗
2 we obtain a nontrivial 2-dimensional bounded global

solution φ2 such that φ2(t) → u∗
2 as t → −∞. As before, there exists an equilibrium

u∗
3, the GASS of W2 := C J (φ2(0))+ , such that φ2(t) → u∗

3 as t → ∞, u∗
3 �= u∗

2 and
u∗
3 ∈ α(ξ). As before, dim u∗

3 = 1 and W2 does not have a 2-dimensional equilibrium.
If u∗

3 = u∗
1 then W1 = W2 and we would have a heteroclinic cycle of (3D–LotV) in

W1, which cannot happen since dim W1 = 2. Thus u∗
3 �= u∗

1 and W1 �= W2.
Applying Theorem 3.13 once again, now for u∗

3, we obtain a nontrivial 2-
dimensional bounded global solution φ3 such that φ3(t) → u∗

3 as t → −∞. Thus,

if u∗ is the GASS of W3 := C J (φ3(0))+ , we have dim u∗ = 1, u∗ �= u∗
3 and W3 does

not have 2-dimensional equilibria. If u∗ = u∗
2 then W2 = W3 and there would be a
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Fig. 1 Invasion graph for the May–Leonard or for the Rock-Scissors-Paper Lotka–Volterra System, which
is the only possible cyclic invasion graph Lotka–Volterra systems in dimension 3 with a VL stable matrix

heteroclinic cycle of (3D–LotV) in W2, which cannot happen. Hence u∗ = u∗
3, and

none of the three walls have 2-dimensional equilibria. Moreover, φ1, φ2, φ3 consti-
tutes a heteroclinic cycle in α(ξ) connecting the three 1-dimensional equilibria of
(3D–LotV).

Note that, since the three 1-dimensional equilibria have nontrivial unstable man-
ifolds, neither of them can be the GASS of the system in 3-dimensions. Therefore,
(3D–LotV) must have a three-dimensional equilibrium which is the GASS.

Lastly, assume that there exists x ∈ α(ξ) which is not in the cycle defined by φ1,
φ2, φ3. Then x cannot belong Wi \ int Wi , i = 1, 2, 3, because then, as x is not an
equilibrium, we would have α(x) = {0}, and zero cannot belong to α(ξ). This means
that x ∈ int Wi for some i = 1, 2, 3. Then ω(x) = {u∗

i+1}, since u∗
i+1 is the GASS of

Wi (here u∗
4 := u∗

1), and α(x) = {u∗
i } since by Lemma 3.14 in two dimensions α limit

must be a singleton. Thismeans that x belongs to a bounded global solution connecting
u∗

i and u∗
i+1. But, since the unstable manifold of a one dimensional equilibrium on

a two dimensional wall must be one dimensional, the solution that connects the two
equilibria Wi is unique, namely φi . Hence, x = φi (t) for some t ∈ R. �


The most well-known cyclic invasion graph for Lotka–Volterra systems with VL
stable matrix A is the May–Leonard model May and Leonard (1975), see Fig. 1 for its
IG. This invasion graph can be generated taking all intrinsic growth rates equal to 1,
and the matrix A being:

A =
⎛
⎝

−1 −β −α

−α −1 −β

−β −α −1

⎞
⎠ ,
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Fig. 2 Structure of the global attractor for the May–Leonard case. Apart from the edges from Fig. 1, we
obtain the additional hyperedge {(1, )(2, )(3, )} → (1, 2, 3) that represent those solutions whose ω-limit is
the GASS and α-limit is the cycle of one species equilibria

with 0 < α < 1 < β, αβ < 1, and α + β < 2, see May and Leonard (1975). The
same invasion graph is given by the matrix A(3)

d below, with d ∈ (−1, 0), which is
more clearly a matrix that represents a Rock-Scissors-Paper dynamics:

A(3)
d =

⎛
⎝

d −1 1
1 d −1

−1 1 d

⎞
⎠ .

Theorem 4.2 For (3D–LotV), the only VL stable case in which there exists a
heteroclinic cycle is the May–Leonard.

Proof The only way to have a cycle in 3D is if some nontrivial 3-dimensional bounded
global solution ξ has a nontrivial α-limit set α(ξ). From the previous theorem, there
are no 2-dimensional equilibria and α(ξ) consists of exactly a cycle connecting the
three 1-dimensional equilibria, and the system has a 3-dimensional GASS. It is simple
to see that α(ξ) is the unique heteroclinic cycle of (3D–LotV), since the bounded
global solutions connecting the 1-dimensional equilibria are unique. Thus, it follows
that every other nontrivial 3-dimensional bounded global solution ψ of (3D–LotV)
either have α(ψ) = {0} or α(ψ) = α(ξ). In either case ω(ψ) consists of the GASS
of (3D–LotV). �


In order to express the structure of the global attractor for the VL stable case of
May–Leonard dynamics, the notion of graph between the equilibria is insufficient.
One possibility is to use the concept of hypergraph, i.e. the pair (V , E), where V are
vertices, and E ⊂ P(V ) × P(V ) (P(V ) being the family of nonempty subsets of V ),
i.e. edges do not exist only between vertices, but also between sets of vertices, we
call such edges hyperedges Ferraz de Arruda et al. (2024). The structure of the global
attractor of the May–Leonard case is depicted in Fig. 2.
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We formulate an open question for the general case

Open question. From our previous analysis we know that for every hyperedge, its
target must be a singleton (as the matrix A is VL stable), and its source, if it is not
a singleton, must contain a cycle. We leave open the question: how to extend the IG
algorithm to construct all such hyperedges for the N dimensional case with cycles?

A matrix A = (ai j )
N
i, j=1 ∈ R

N×N is said to be:

◦ strongly row diagonally dominant if for each i = 1, . . . , N

|aii | >
∑
j �=i

|ai j |;

◦ strongly column diagonally dominant if for each j = 1, . . . , N

|a j j | >
∑
i �= j

|ai j |.

Corollary 4.3 If A is either row diagonally dominant or column diagonally dominant,
there are no heteroclinic cycles in (3D–LotV). In general, for a Lotka–Volterra system
(LotV) in any dimension, if A is either row or column diagonally dominant, then there
is no cycle involving only single-species equilibria.

Proof Let us assume that we have a cycle of connections between one-species equilib-
ria in arbitrary multidimensional dimensional situation. In 3D case, as it is shown in
Theorem 4.2, this is the only possible cycle. Assume that the cycle has the form that is,
u∗
1 → u∗

2 → u∗
3 → . . . u∗

K → u∗
K+1 :=u∗

1 (we can assume without loss of generality
that this is the order of the cycle by simply renaming the species, if necessary). The
invasion rates are given by:

ri (u∗
i+1) = bi − ai,i+1

bi+1

ai+1,i+1
for i = 1, . . . , K ,

where aK ,K+1 := aK ,1.
Claim: All these invasion rates are nonpositive.
We prove that r1(u∗

2) � 0 and the claim for other invasion rates holds analogously.
Since there is a connection from u∗

1 to u∗
2, then u∗

2 must be the GASS of the two-
dimensional problem involving species 1 and 2. If r1(u∗

2) > 0, the equilibrium u∗
2

would be unstable, which is a contradiction. Thus, the claim is proved.
Therefore, we have:

bi � ai,i+1
bi+1

ai+1,i+1
for i = 1, . . . , K .
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Since all equilibria u∗
i exist, it must be bi > 0.Multiplying the K inequalities above

by each other, we obtain

0 <

K∏
i=1

bi �
∏K

i=1 ai,i+1∏K
i=1 ai,i

K∏
i=1

bi ,

which implies that

1 �
∏K

i=1 |ai,i+1|∏K
i=1 |ai,i |

,

and contradicts either the row or column diagonal dominance of A.
Note that if all equilibria in the cycle are assumed to be hyperbolic, then the

inequalities in diagonal dominance conditions can be relaxed to be non-strict. �


5 Computational results

5.1 Constructing and detectingVolterra–Lyapunov stability

Our method to study cycles in ecological systems was then to generate VL stable
matrices and calculate the associated invasion graphs by Algorithm 3.6. The VL stable
matrices can be generated randomly using Theorem 3.2, following the steps:

◦ Generate a random positive diagonal matrix H .
◦ Generate a random antisymmetric matrix J : to do this, we must generate a random
matrix K and then take J = K − K T .

◦ Finally, we generate a random symmetric stable matrix S: to do this, we generate a
randommatrix F , and thenwe take the symmetric stable matrix S = F +FT −α I ,
where α � 0 is big enough so that S has only strictly negative eigenvalues.

With a generator of random VL stable matrices, we can study computationally
the usual dynamics of Volterra–Lyapunov stable Lotka–Volterra systems. This greatly
improved our ability to understand the dynamics for VL stable matrix A, because
contrary to “naive” method consisting in random generation of a matrix A, and
checking if A is VL stable, with this new method, the constructed matrices A are
always VL stable.

ConstructingVL stablematrices helps us to understandwhat possible behaviors we
have for the global attractors for problem (LotV) with such interaction matrices. There
is however, another big problem in applications: given amatrix obtained by an abstract
or numerical model, how can we verify if this matrix is Volterra–Lyapunov stable, so
that we can apply the results in Takeuchi (1996) and guarantee that every submatrix
of A generates a dynamics with a globally stable asymptotic equilibrium? Several
articles providemathematical methods to check if amatrix is VL stable (Kraaijevanger
1991; Redheffer 1985; Cross 1978), and even models not related to ecology can be
studied using Volterra–Lyapunov stability (Mayengo 2023; Chien and Shateyi 2021),
if VL-stability is concluded.
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Here, we present a numerical approach to discover if a matrix A is Volterra–
Lyapunov stable. The great difficulty in this problem is finding an appropriate Volterra
multiplier H , a diagonal positive matrix such that H A + AT H is a symmetric stable
matrix (all eigenvalues are strictly negative).

Randomly sampling H , and verifying if H A+ AT H is stable, is very costly in terms
of time, specially for higher dimensions, and not very conclusive without running over
many possible multipliers.

Let V be the space of diagonal matrices in R
N with all elements di ∈ (0, 1). A

matrix A is VL stable if, and only if, there exists a matrix H ∈ V such that H A+ AT H
is stable. Our approach is to define an objective function O : V → R as follows:

O(H) is the maximum of the eigenvalues of the matrix H A + AT H .

The problem of finding out if A is VL stable reduces to the minimization of function
O over V and checking whether this function attains some strictly negative value.

We use the function minimize from Python’s library scipy.optimize, to minimize
the objective function O. The function stops if it finds H ∈ V such that O(H) is
strictly negative (below a negative threshold like−10−10), and in this case the program
concludes that the matrix A is VL stable. Clearly, the minimization process can stop
in local minima, so that it is appropriate to try the minimization inside a loop so
that hundreds or thousands of initial points H ∈ V are used as starting points of the
optimization process. If in the end of all the minimization trials, no H ∈ V is found
so that O(H) is below a negative threshold, the result of the test is inconclusive.

This test has a 100% precision because it only concludes that amatrix is VL stable if
it really is. The problem is that the result can be inconclusive because theminimization
can get stuck in localminima and not achieve the globalminimumof functionO, which
could be negative or not. To mitigate this problem, we can try thousands of different
initial conditions H ∈ V . We denote by ninitial the number of initial values of H
with which we run the minimization process before ending the test. For any VL stable
matrix A, there is some H ∈ V such that H A + AT H is stable, and by continuity this
implies that there exists an open and not empty set J ⊂ V such that for any H ∈ J ,
O(H) < 0. Since the volume of J in V is strictly positive, the probability of not
concluding VL-stability for a VL stable matrix A can be made arbitrarily small if we
try sufficiently many well distributed initial values for H (as ninitial → ∞).

Moreover, the test is very fast and works for any dimension. For dimension between
2 and 20, we can see below that the algorithm takes only some seconds to run and
detects almost 100% of Volterra–Lyapunov stable matrices whenwe use ninitial = 50.
See the results in Fig. 3. Ifwehave at our disposal the exact computational algorithm for
finding the largest eigenvalue of a symmetric matrix, we can formulate the algorithm
that determines whether a matrix is VL stable. If a given matrix is VL stable, then the
algorithm halts, but if it is not VL stable, then the algorithm does not halt. Therefore,
we prove that the question of the matrix VL stability is partially decidable. Note that
the set V is open in the separable space R

N and therefore is is possible to find a
countable dense set {Hi }∞i=1 ⊂ V . We formulate the following algorithm:
Initialize i := 1.

(a) Find the largest eigenvalue λi of Hi A + AT Hi .
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Fig. 3 Effectiveness and speed of the algorithm for testingVolterra–Lyapunov stability. A total of 50 random
VL stable matrices were passed through the program that tried minimizing function O with 50 different
initial values of H . The inconclusive rate denotes the rate of VL stable matrices that the algorithm could
not detect. The algorithm detected VL stability for all the matrices with dimension up to 19, which means a
100% recall, and it failed only for 6% of the matrices in dimension 20. The mean time to run the algorithm
was always less than 10 seconds

(b) If λi < 0 then A is VL stable. Stop.
(c) Otherwise increment i and return to step (a).

Theorem 5.1 If A is VL stable then the above algorithm halts.

Proof If there exists H ∈ V such that all eigenvalues of H A+ AT H are negative then,
as the eigenvalues depend continuously on the matrix entries, there exists Hi with the
same property and the algorithm halts. �


5.2 Cyclic behavior

This section presents two examples of cyclic behavior in the system (LotV) with a
VL-stable matrix, which can be viewed as a generalization of May–Leonard-type
dynamics to higher dimensions. To the best of our knowledge, these examples have
not been studied previously. So, generalizing the May–Leonard example from May
and Leonard (1975), illustrated in the Fig. 1, which represents a cycle of the form
Rock–Paper–Scissors, we construct an example of a Volterra–Lyapunov stable matrix
A(5)

d that induces a dynamics of the form Rock–Paper–Scissor–Lizard–Spock (which
we name RPSLS, for short) Kass and Bryla (2009). The intrinsic growth rates were all
chosen to be 1, and we created the matrix A(5)

d based on Proposition 3.2. The matrix

H is taken as identity, and A(5)
d = Sd + J , where Sd is a diagonal matrix with diagonal

d < 0, and J is an antisymmetric matrix representing the cyclic dynamics, more
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Fig. 4 The RPSLS dynamics in a Volterra–Lyapunov system of equations given by matrix A(5)
d mentioned

above with d ∈ (−1, 0). The nodes represent admissible equilibria, (node (1,2,3), for example, is the
equilibrium with species 1, 2 and 3 coexisting). The arrows represent transitions between equilibria, which
happen in the global attractor of the dynamical system (LotV). The cycles are represented in red. Notice the
cycle of size five connecting all the one species equilibria and the other cycle of size five connecting all the
three species equilibria. Since all equilibria are hyperbolic the graph in Fig. 4a represents all connections
in the global attractor

precisely, we get:

A(5)
d =

⎛
⎜⎜⎜⎜⎝

d −1 1 −1 1
1 d −1 1 −1

−1 1 d −1 1
1 −1 1 d −1

−1 1 −1 1 d

⎞
⎟⎟⎟⎟⎠

In Fig. 1, we can see the Invasion graph for theMay–Leonard system, that coincides
with the invasion graph of the Rock–Paper–Scissors system generated by matrix A(3)

d .
In Fig. 4awe can see the invasion graph of theRPSLSLotka–Volterra systemgenerated
by A(5)

d :

The increase of the absolute value of the diagonal in matrix A(5)
d , makes the system

more diagonally dominant, and we observe the inhibition of the cycle behavior. In this
case, this inhibition is very illustrative. The cycles exist in the invasion graph when
d ∈ (−1, 0), they cease to exist when d = −1 (the case of non-hyperbolicity), and
when d < −1, we have observed by simulation that the invasion graph determined by
matrix A(5)

d is the same as the invasion graph determined by the diagonalmatrix AS(d),
which does not have any cycles because of the symmetry of AS(d) (symmetric Lotka–
Volterra systems have a Lyapunov function Pykh (2001)). This graph determined by
A(5)

d when d < −1 contains all possible communities as admissible communities, and
has a gradient structure (Fig. 5).

It was proven in Theorem 4.2 that the only cyclic invasion graph for VL stable
Lotka–Volterra systems in 3D is the May–Leonard example. In the previous example,
we showed that for VL stable matrix A, there can be cycles involving equilibria with
coexisting species, with size 5, and this example can be generalized to prove that there
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Fig. 5 The RPSLS dynamics with high self-regulation (d � −1). When d = −1, the graph is the same as
before, but without the cycles’ transitions. When d < −1, we have the bifurcation of several equilibria (all
communities become admissible), and the structure of the graph is the same as the structure of the symmetric

decoupled systemwith the diagonalmatrix AS(d) (the symmetric part of A(5)
d ). Since the system for d = −1

contains nonhyperbolic equilibria, there may exist heteroclinic connections not visible in graph in Fig. 5a.
The graph depicted in Fig. 5b is acyclic and all equilibria are hyperbolic, whence all connections are present
in the graph, and in fact the whole structure of the global attractor is recovered

can exist cycles of arbitrary size. Now we show that the cycles can connect equilibria
with different number of species coexisting in each. This can be done using aVL stable
matrix constructed with Proposition 3.2, with S being a negative diagonal matrix, and
J reflecting the fact that species 1 is replaced by species 2 and 3, which are both
replaced by species 4, which is replaced again by species 1. More specifically, we use
(with d = −0.5) (Fig. 6):

A =

⎛
⎜⎜⎝

d −1 −1 1
1 d 0 −1
1 0 d −1

−1 1 1 d

⎞
⎟⎟⎠

We now try to generalize the comment that increasing the diagonal of the matrix
A inhibit cyclic behavior. We first observe that the interactions matrix A can be
decomposed in a symmetric and an antisymmetric part, respectively:

AS = A + AT

2
and AJ = A − AT

2
.

The whole interactions matrix is given by:

A = AS + AJ .

If | · | denotes the sum of the absolute values of the entries of a matrix, we observed
that the presence of cycles in the invasion graph of Lotka–Volterra equations with
interactions matrix A is directly proportional to |AJ |, and inversely proportional to

123



A theoretical and computational study of heteroclinic cycles… Page 27 of 31 28

Fig. 6 Invasion graph for the matrix A with a cycle containing a double species invasion in a single species
environment. All equilibria of the system are hyperbolic, and therefore all connections in the global attractor
are captured in the graph

|AS|. In other words, antisymmetric interactions facilitate the existence of cycles,
while symmetric interactions inhibit them (Fig. 7).

We call into attention three aspects of this result.

◦ The cycle’s density goes to zero when the antisymmetric part tends to zero, and
the interaction’s matrix becomes symmetric. This is in accordance with the fact
that symmetric Lotka–Volterra systems are gradient (see Pykh (2001)).

◦ Additionally, we sampled millions of row diagonally dominant or column diag-
onally dominant matrices, allowing positive and negative intrinsic growth rates
and interactions, and no cyclic invasion graph was found. This made us very con-
fident that diagonally dominant interaction matrices eliminate the possibility of
heteroclinic cycles.

◦ The self-regulation rates aii , i ∈ {1, . . . , n} are in the symmetric part of matrix
A, that is, the diagonal of AS is the diagonal of A, and the diagonal of AJ is
zero. Therefore, when the matrix A is diagonally dominant, the symmetric part
of A is greater than its antisymmetric part, so the diagonally dominant matrices
are located in the region where |AJ |/|AS| < 1, which is in accordance with the
conjecture that diagonally dominant matrices have no cycles. We now understand
that the absence of cycles is not only caused by diagonal dominance, but, more
generally, it is caused by the strength of symmetric relations.

◦ Finally, an ecological system has a high probability of containing cycles when the
symmetric relations are weak in relation to the antisymmetric relations, specially
for systems with a lot of species.

We finish with an open questions regarding our computational experiments:
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Fig. 7 Cycle density vs. antisymmetric by symmetric Rate. The norm of the matrix was taken as the sum
of its absolute values. We randomly sampled 500 matrices A for each given rate |AJ |/|AS | and dimension,
and calculated the associated invasion graphs. The y-axis represents the rate of those 500 invasion graphs
that contained cycles

Open question 1. Can we prove mathematically that there are no cycles in the global
attractor of Lotka–Volterra systems with (row or column) diagonally dominant inte-
raction matrix A?

One could also propose a stronger conjecture, which may serve as an interesting
starting point for further research.

Open question 2. Can we prove mathematically that there are no cycles in the global
attractor of Lotka–Volterra systems with the matrix A with (appropriately defined)
dominating symmetric part?
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