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Abstract. The purpose of this paper is to study Liouville-type theorems for
the equation 2∆∞u + ∆u = 0 in half-spaces. Our main result classifies C1-
viscosity solutions that continuously vanish on the flat boundary and grow
linearly at infinity. This is somehow equivalent to treating a class of equations
in divergence form in Orlicz space without the ∆2 condition. The ingredients
for the proof involve the regularity theory for solutions; the construction of
barriers along the boundary; and new up to the boundary gradient estimates.
These elements allow to implement a Lipschitz implies C1,α type approach.
We obtain some applications that encompass the recovery of classical results
like Radó’s zero-level set removability result and Schwarz reflection principle
yielding substantially more regularity.
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1 Introduction

Classification of solutions to elliptic equations plays a pivotal role in studying
problems in partial differential equations, geometric analysis, and geometry.
A classical result from the theory of harmonic functions establishes that if u
is a nonnegative harmonic function in the half-space Rn

+ = {(x1, . . . , xn) ∈
Rn : xn > 0}, continuously vanishing on ∂Rn

+, then u(x) = u(en)xn for
every x ∈ Rn

+. Possibly this result was first stated by Loomis and Wider
[20]. Afterward, this was considered by Rudin [25] in the higher dimensional
case. For a short proof of this result for harmonic functions in half-space,
we refer the reader to [5] and a textbook proof can now be found in Theo-
rem 7.22 in [1]. In [17], Kilpeläinen et al proved this result for p-harmonic
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function. Similar results were also obtained for the infinity Laplace and the
minimal surface equations. These results can be found in [4] and [12], re-
spectively. The classification theorem for g-harmonic functions in half-spaces
was obtained by Braga and Moreira in [7], and for homogeneous differential
inequalities involving the extremal Pucci operators (M±

λ,Λ) by Braga in [6].
Following [7], let g : [0,+∞)→ R such that

(g1) g ∈ C0[0,∞) ∩ C1(0,∞),

(g2) g(0) = 0, g(t) > 0 for t > 0 and lim
t→∞

g(t) = +∞.

For g satisfying (g1) and (g2), we define the Lieberman’s quotient by

Qg(t) :=
tg′(t)

g(t)
for t > 0.

For δ0 > 0, we say that a function g satisfying (g1) and (g2)

g ∈ Cδ0 ⇐⇒ Qg(t) ≥ δ0 ∀ t > 0.

For a pair 0 < δ0 ≤ g0, we say that the g belongs to Lieberman’s class Cδ0,g0
if only if (g1) and (g2) are satisfied and

δ0 ≤ Qg(t) ≤ g0 ∀ t > 0. (1)

These assumptions on the function g establish for some kind of uniform
ellipticity conditions to operators in divergence form of the type

Lgu := div

(
g(|∇u|) ∇u

|∇u|

)
. (2)

Let Rn
+ := {x = (x1, . . . , xn) ∈ Rn : xn > 0}, B+

r := {x ∈ Rn
+ : |x| < r},

C0
vfb(B

+
r ) := {u ∈ C0(B+

r ) : u = 0 on B′r := ∂Rn
+ ∩ ∂B+

r },
C0
vfb(Rn

+) := {u ∈ C0(Rn
+) : u = 0 on ∂Rn

+},

Ck
fb(B

+
r ) :=

⋃
0<ε<r

Ck(B+
r−ε), for k ∈ N ∪ {∞},

where r > 0, C0(Rn
+) denotes the set of continuous functions on Rn

+, and the
subscripts vfb and fb stand for vanishing on the flat boundary and the flat
boundary, respectively. In [7], the authors also show that if u ∈ C0

vfb(Rn
+) ∩

W 1,G
loc (Rn

+) is a nonnegative solution in the sense of distributions to

div

(
g(|∇u|)
|∇u|

∇u
)

= 0 in Rn
+, (3)
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where G(t) =
� t

0
g(s)ds for t > 0, G(0) = 0, and g ∈ Cδ0,g0 , then u(x) =

u(en)xn for all x ∈ Rn
+. In [7] it is also proved a version of this result without

the sign restriction. More precisely, if u ∈ C0
vfb(Rn

+)∩W 1,G
loc (Rn

+) is a solution
in the sense of distributions to (3) and

u(x) = O(|x|) as |x| → ∞, x ∈ Rn
+,

then
u(x) = u(en)xn ∀x ∈ Rn

+.

The proof of this result in [7] is short but far from immediate. It is the combi-
nation of a quantitative version of the Hopf-Oleinik Lemma [8, Theorem 3.2]
with Carleson estimate, boundary Harnack inequality, and Schwartz reflec-
tion principle in the context of non-negative g-harmonic functions. Also, it
worth observing that if u is a non-negative solution in any of these situations,
then u(x) = O(|x|) at infinity.

The main purpose of this paper is to present a proof of the classification
theorem for functions in half-spaces that vanish continuously on the flat
boundary and are also solutions to the following quasilinear non-uniformly
elliptic equation in nondivergence form

L∞u := 2∆∞u+ ∆u = 0 in Rn
+,

where

∆∞u :=
n∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
= 〈D2u(x)∇u(x),∇u(x)〉.

This is somehow equivalent to treating (3) for the case where g(t) = 2tet
2
.

In this case δ0 = 1 and g0 =∞. Hence, the so called ∆2 condition is violated
in the context of elliptic equations (in divergence form) in Orlicz spaces. To
see this, letting φ(t) = 2tet

2
, we have

Qφ(t) =
φ′(t)t

φ(t)
= 1 + 2t2 ≥ 1, ∀ t > 0. (4)

Thus, φ ∈ C1 and

lim
t→+∞

φ′(t)t

φ(t)
= +∞.

Consequently, φ /∈ Cδ0,g0 for any g0 ≥ 1, and the degenerate operator defined
by

Lφ(u) := div

(
φ(|∇u|) ∇u

|∇u|

)
= div

(
2e|∇u|

2∇u
)

(5)
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is a quasilinear non-uniformly elliptic operator. A straightforward compu-
tation on the divergence above shows that this operator can be written in
nondivergence form as

Lφu = 2e|∇u|
2 {2∆∞u+ ∆u} = 2e|∇u|

2L∞u. (6)

Hence,
Lφu = 0 ⇐⇒ L∞u = 0.

Motivated by [7], we obtain the following classification result:

Theorem 1.1. Let u ∈ C1(Rn
+) ∩ C0

vfb(Rn
+) be a viscosity solution to

L∞u = 0 in Rn
+. (7)

Assume that
u(x) = O(|x|) as |x| → ∞, x ∈ Rn

+. (8)

Then,
u(x) = u(en)xn ∀x ∈ Rn

+.

In the proof of Theorem 1.1, we start by showing the equivalence among
C1 viscosity, classical, and distributional solutions to (7). In turn, the con-
struction of suitable barriers renders the control of the solution by the dis-
tance up to the flat boundary. Now, the interior gradient estimate kicks
in yielding global Lipschitz regularity up to the boundary. This allows us
to truncate the equation recovering Lieberman’s ellipticity conditions in the
whole half-space. Finally, a Lipschitz implies C1,α type result finishes the
proof.

As a matter of fact, the equivalence of solutions mentioned above goes
further dealing with local minimizers of

JΩ(u) =

�
Ω

e|∇u|
2

dx (9)

The study of the regularity of the solutions to (10) was first considered by
G. M. Lieberman to answer a question posed by M. Giaquinta. In [19],
Lieberman proved that if u is a local minimizer of (9), then u ∈ C2(Ω) and
it is a classical solution to

L∞u = 0 in Ω. (10)

This way, our equivalence regularity result (Theorem 1.2) can be seen as a
complement to the theory developed by Lieberman in [19]. We should also
mention the paper by Marcellini [22], where the local Lipschitz regularity of
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minimizers is established for a more general class of functionals containing
the ones treated here. The results in [22] are also valid for vector valued
maps.

The following result deals with the regularity theory for solutions (see
Definition 2.1) to (10).

Theorem 1.2. Let Ω is an open subset of Rn. Assume u ∈ C1(Ω). The
following statements are equivalent:

(a) u is a classical solution to (10);

(b) u is a strong solution to (10);

(c) u is a weak solution to (10);

(d) u is a local minimizer of (9);

(e) u is a viscosity solution to (10).

Moreover, if any of the statements above holds then u ∈ C∞(Ω).

We finish this section with some applications. The first one is the version
of Theorem 1.1 in the whole space:

Theorem 1.3. Let u ∈ C1(Rn) be a viscosity solution to

L∞u = 0 in Rn. (11)

Assume that
u(x) = O(|x|) as |x| → ∞. (12)

Then, u is an affine function.

As an immediate consequence, we have the following.

Corollary 1.4. Let u ∈ C1(Rn) be a viscosity solution to

L∞u = 0 in Rn. (13)

Assume that
u(x) = O(|x|) as |x| → ∞, x ∈ Rn, (14)

and u is bounded above or below. Then, u is a constant.

5



Liouville Theorem for Quasilinear Elliptic Equations

The second application is a Radó-type result. As it is well known, the
classical Radó’s removability result [24] establishes that if f is a complex-
valued continuous function in an open set Ω in the complex plane and f is
holomorphic in Ω\{z ∈ Ω : f(z) = 0}, then f is holomorphic in the whole Ω.
For the case of harmonic functions, see [2]. The p-Laplacian case was treated
in [14, 16]. For quasilinear elliptic and parabolic equations, this result was
studied by Juutinen and Lindqvist [15] and for fully nonlinear equations by
Takimoto [27]. For more details, see the references therein.

In this paper, we use the result in [15] to deepen the removability result
on the level set {u = 0} for the equation L∞u = 0 yielding (smooth) classical
solutions. We prove the following corollary.

Corollary 1.5. Let Ω ⊂ Rn be an open set and u ∈ C1(Ω) be a viscosity
solution to

L∞u = 0 in Ω \ {x ∈ Ω : u(x) = 0},

then u ∈ C∞(Ω) and it is a classical solution to (10) in the whole Ω.

We observe that the C1 regularity in the theorem above is sharp as can
be seen by the example given by u ∈ C0,1(B1) defined as u(x) = |xn|.

Finally, we reach our last application, the Schwarz reflection principle for
the equation L∞u = 0. We highlight that our result also encompasses a
regularity result by showing that C1 solution up to flat boundary are indeed
smooth. The result goes as follows.

Corollary 1.6 (Schwarz reflection principle). Suppose u ∈ C0
vfb(B

+
R) be a

viscosity solution to
L∞u = 0 in B+

R .

Let U be the odd reflection across the flat boundary, i.e.,

U(x′, xn) =

{
u(x′, xn) if (x′, xn) ∈ BR, xn ≥ 0

−u(x′,−xn) if (x′, xn) ∈ BR, xn < 0.

Then, U ∈ C0(BR) and it is a viscosity solution to

L∞U = 0 in BR.

Moreover, if u ∈ C1
fb(B

+
R) then U ∈ C∞(BR). In particular, u ∈ C∞fb(B+

R).

The plan of this paper is as follows: Since the regularity theory for (10)
is used to prove the classification results, we begin by proving Theorem 1.2
in Section 2. In Section 3 a truncation argument is employed to introduce a
suitable Lieberman’s class of functions. Barriers are constructed in Section
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4, which are used in Section 5 to prove the boundary gradient estimates.
Section 5 presents a proof of Theorem 1.1. Finally, Section 7 deals with the
proofs of the results regarding the applications.

Acknowledgements. The authors appreciate the reviewer’s careful read-
ing and suggestions for improvement in the paper. Jefferson Abrantes Santos
was partially supported by CNPq grant 304774/2022-7 and Paráıba State Re-
search Foundation (FAPESQ) grant 3031/2021. Diego Moreira was partially
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Edital 06/2023, and 310292/2023-9 and 406692/2023-8 (CNPq), ICTP (Tri-
este) Regular Associate Programme. This work was supported by grant
2023/14636-6, São Paulo Research Foundation (FAPESP).

2 Proof of Theorem 1.2

In what follows we introduce various concepts of solutions to L∞u = 0 that
are used to prove the classification results. This set up the environment for
our regularity result (Theorem 1.2). This will be used on several occasions
in the proof to come.

Definition 2.1. Let Ω ⊂ Rn be an open set.

1. A function u ∈ C2(Ω) is a classical solution to (10) if it satisfies the
equation (10) pointwise everywhere in Ω.

2. A function u ∈ W 2,p
loc (Ω), 1 ≤ p < ∞, is a strong solution to (10) if it

satisfies the equation (10) almost everywhere in Ω.

3. Let

W(Ω) =

{
u ∈ W 1,1

loc (Ω) :

�
V

2e|∇u|
2|∇u| dx <∞ ∀V ⊂⊂ Ω

}
.

A function u ∈ W(Ω) is a weak solution to (10) if

�
Ω

2e|∇u|
2∇u∇ϕdx = 0 ∀ϕ ∈ C∞c (Ω),

i.e., u solves Lφ(u) = 0 in the sense of distributions, where φ(t) = 2tet
2

for t ≥ 0.

4. A function u ∈ C(Ω) satisfies

L∞u ≥ 0 in Ω (15)
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in the viscosity sense if for every ϕ ∈ C2(Ω) such that u−ϕ has a local
maximum at x0 ∈ Ω then L∞ϕ(x0) ≥ 0. In this case, we say that u is
a viscosity subsolution to (10) in Ω. A function u ∈ C(Ω) satisfies

L∞u ≤ 0 in Ω (16)

in the viscosity sense if for every ϕ ∈ C2(Ω) such that u−ϕ has a local
minimum at x0 ∈ Ω then L∞ϕ(x0) ≤ 0. In this case, we say that u is
a viscosity supersolution to (10) in Ω. If u satisfies (15) and (16), we
say that u is a viscosity solution to (10) in Ω.

5. A function u ∈ W 1,1(Ω) is a local minimizer of (9) if JΩ(u) <∞ and

JV (u) ≤ JV (u+ ϕ)

for every V ⊂⊂ Ω and for every ϕ ∈ W 1,1
0 (V ).

In this paper, by a modulus of continuity we mean a nondecreasing func-
tion ω : [0,∞) → [0,∞) such that limt→0+ ω(t) = ω(0) = 0. We now recall
the definition of the rank one map. Let p, q ∈ Rn, we denote p⊗ q the linear
map from Rn to Rn given by p ⊗ q(v) = 〈q, v〉p for all v ∈ Rn. It is easy to
observe that ‖p⊗q‖ = ‖p‖‖q‖. In matrix terms, p⊗q = (aij), i, j = 1, . . . , n,
aij = piqj, where p = (p1, . . . , pn) and q = (q1, . . . , qn) are the coordinates
representation in the canonical basis of Rn. For more details we refer the
reader to the Notation Section in [21] on page xviii.

For future use, we now present equivalent definitions of viscosity solutions
in the next lemma, which is inspired by Proposition 2.4 in [10].

Lemma 2.2. Let Ω ⊂ Rn be an open set. Then, the following are equivalent

a) u is a viscosity subsolution to L∞(u) = 0 in Ω.

b) If x0 ∈ Ω, A is an open neighborhood of x0, ϕ ∈ C2(A) such that

u ≤ ϕ in A and u(x0) = ϕ(x0). (17)

Then L∞(ϕ)(x0) ≥ 0.

c) Same as b) with ϕ ∈ C2(A) replaced by ϕ is a paraboloid.

Proof. We start by proving that a) implies b). Indeed, since A is a neigh-
borhood of x0, there exists B2δ(x0) ⊂ A for some δ > 0. Now, we con-
sider a cut-off function ξ ∈ C∞(Rn) such that so that ξ ≡ 1 in Bδ(x0) and
supp(ξ) ⊂ B2δ(x0). Now, ψ := ϕ · ξ ∈ C2

c (B2δ(x0)). This way, denoting
by ψ∗ the extension of ψ by zero outside B2δ(x0), we see that ψ∗ ∈ C2

c (Ω).
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Now, once ψ∗ = ϕ in Bδ(x0), u−ψ∗ has a local maximum at x0. Thus, once
D2ψ∗(x0) = D2ϕ(x0) and ∇ψ∗(x0) = ∇ϕ(x0) and u is a viscosity subsolution
to L∞(u) = 0 in Ω, we conclude that, L∞(ϕ)(x0) = L∞(ψ∗)(x0) ≥ 0. This
proves b). It is immediate that b) implies c). Now let us prove that c) implies
a). Indeed, let ϕ ∈ C2(Ω) such that u − ϕ has a local maximum at x0. By
Taylor’s expansion, we have

ϕ(x) = Px0(x) + o(|x− x0|2) as x→ x0,

where Px0(x) = ϕ(x0) +∇ϕ(x0) · (x−x0) + 1
2
(x−x0)tD2ϕ(x0)(x−x0). From

this, for small ε ∈ (0, 1) given, there exists a δ = δ(ε) > 0 such that

ϕ(x) ≤ Px0(x) + ε|x− x0|2 =: P ε
x0

(x) ∀x ∈ Bδ(x0). (18)

Now, reducing δ > 0 if necessary, by assumption, we have

u(x)− ϕ(x) ≤ u(x0)− ϕ(x0), ∀x ∈ Bδ(x0).

This implies,

u(x) ≤ ϕ(x) + (u(x0)− ϕ(x0)) ∀x ∈ Bδ(x0).

Inequality above together with (18) implies that for all x ∈ Bδ(x0),

u(x) ≤ ϕ(x) + (u(x0)− ϕ(x0)) ≤ P ε
x0

(x) + (u(x0)− ϕ(x0)) =: Qε
x0

(x)

Clearly,

D2Qε
x0

(x) = D2P ε
x0

(x) = D2Px0(x)+2εIn, ∇Qε
x0

(x) = ∇ϕ(x0)+2ε(x−x0)

Since c) holds, we conclude that

0 ≤ L∞(Qε
x0

)(x0) = L∞(P ε
x0

)(x0)

= 2∆∞(P ε
x0

)(x0) + ∆P ε
x0

(x0)

= 2〈(D2ϕ(x0) + 2εIn) · ∇ϕ(x0),∇ϕ(x0)〉+ ∆ϕ(x0) + 2nε

= L∞(ϕ)(x0) + 4ε|∇ϕ(x0)|2 + 2nε.

Letting ε→ 0+, we obtain L∞(ϕ)(x0) ≥ 0. This finishes the proof.

Lemma 2.3. Let Ω ⊂ Rn be an open set, and let X ∈ C0(Ω;Rn) ∩ L∞(Ω)
be a vector field satisfying

|X(x)−X(y)| ≤ ω(|x− y|) ∀x, y ∈ Ω,
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where ω is a modulus of continuity. Set

A(x) = X(x)⊗X(x) + In = (Xi(x)Xj(x) + δij), ∀ i, j = 1, . . . , n, ∀x ∈ Ω,

where by In we mean the n× n-identity matrix and X1, . . . , Xn are the com-
ponents of X, i.e., X(x) = (X1(x), . . . , Xn(x)), x ∈ Ω. Then,

1. A is a uniformly elliptic (symmetric) matrix with ellipticity constants

given by 1 and
(

1 + ‖X‖2
L∞(Ω)

)
, i.e.,

|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤
(
1 + ‖X‖2

L∞(Ω)

)
|ξ|2 ∀x ∈ Ω, ξ ∈ Rn.

2. ‖A(x)− A(y)‖ ≤ 2‖X‖L∞(Ω) · ω(|x− y|) ∀x, y ∈ Ω.

Proof. For item (1), we observe that for every ξ ∈ Rn, we have

〈A(x)ξ, ξ〉 = 〈X(x)⊗X(x)ξ, ξ〉+ |ξ|2.

Thus,

(‖X‖2
L∞(Ω) + 1)|ξ|2 ≥ (|X(x)|2 + 1)|ξ|2 ≥ 〈X(x)⊗X(x)ξ, ξ〉+ |ξ|2 ≥ |ξ|2.

For item (2), for every x, y ∈ Ω, we have

‖A(x)− A(y)‖ = ‖X(x)⊗X(x)−X(y)⊗X(y)‖
≤ ‖X(x)⊗X(x)−X(x)⊗X(y)‖+ ‖X(x)⊗X(y)−X(y)⊗X(y)‖
= ‖X(x)⊗ (X(x)−X(y))‖+ ‖(X(x)−X(y))⊗X(y)‖
= |X(x)||X(x)−X(y)|+ |(X(x)−X(y)||X(y)|
≤ 2‖X‖L∞(Ω) · ω(|x− y|).

Lemma 2.4. Let V ⊂ Rn be an open set, u ∈ W 1,p(V ) ∩ L∞(V ), where
1 ≤ p < ∞, and F ∈ C1(R). Then the composite function F (u) ∈ W 1,p(V )
and (F (u))xi = F ′(u)uxi a.e. on V for i = 1, . . . , n.

Proof. Let L = ‖u‖L∞(V ) and ϕL ∈ C1(R), satisfying 0 ≤ ϕL ≤ 1, ϕL = 1
on [−2L, 2L], supp(ϕL) ⊂ (−3L, 3L) and |ϕ′L| ≤ 2/L. Set FL = F · ϕL. We
then have FL = F on [−2L, 2L], supp(FL) ⊂ (−3L, 3L), FL ∈ C1(R), and
F ′L = F ′ · ϕL + F · ϕ′L. Since

‖F ′L‖L∞(R) ≤ sup
[−3L,3L]

|F ′|+ 2

L
sup

[−3L,3L]

|F | <∞,
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by the chain rule [11, Theorem 4.4], FL(u) ∈ W 1,p(V ) and

(FL(u))xi = F ′L(u)uxi a.e. on V for i = 1, . . . , n.

Since |u(x)| ≤ L a.e. on V , it follows that FL(u) = F (u) on V , and then we
conclude the proof of the lemma.

Proof of Theorem 1.2. Let us prove that

(a)⇒ (b)⇒ (c)⇒ (d)⇒ (a) ⇐⇒ (e),

which will establish the theorem.
We first prove that (a) ⇒ (b). For this, we only observe that C2(Ω) ⊂

W 2,n
loc (Ω).

We now prove that (b)⇒ (c). Assume that u ∈ W 2,p
loc (Ω), 1 ≤ p <∞, is a

strong solution to (10). Let ϕ ∈ C∞c (Ω) and V ⊂⊂ Ω such that suppϕ ⊂ V .
Using Lemma 2.4 to F (t) = et

2
, we obtain e|∇u|

2 ∈ W 1,p(V ) ∩ L∞(V ). For
each i ∈ {1, . . . , n}, since uxi ∈ W 1,p(V ) ∩ L∞(V ), we have e|∇u|

2
uxi ∈

W 1,p(V ) ∩ L∞(V ), by Leibniz’s rule in Sobolev space (see Theorem 4.4 in
[11]). Using Lemma 2.4 once more, we have

(
e|∇u|

2

uxi

)
xi

= e|∇u|
2

(
2

n∑
k=1

uxkuxkxiuxi + uxixi

)
, ∀ i ∈ {1, . . . , n}.

Adding the identities above, we arrive at

−div
(
e|∇u|

2∇u
)

= −e|∇u|2 (2∆∞u+ ∆u) = 0 a.e. in V .

Hence,

0 = −
�
V

ϕdiv
(
e|∇u|

2∇u
)
dx =

�
Ω

e|∇u|
2∇u∇ϕdx,

which proves (c).
In order to show that (c)⇒ (d), assume that u is a weak solution to (10).

Let V ⊂⊂ Ω be an open set and

JV (v) =

�
V

e|∇v|
2

dx, v ∈ W 1,1(V ),

whenever JV (v) is finite. Let v ∈ W 1,1(V ) such that v− u ∈ W 1,1
0 (V ). Using

the convexity of the function F (ξ) = e|ξ|
2
, ξ ∈ Rn, we obtain

JV (v) =

�
V

e|∇v|
2

dx ≥
�
V

e|∇u|
2

dx+

�
V

2e|∇u|
2∇u∇(v − u) dx. (19)
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Since v − u ∈ W 1,1
0 (V ), there exists φk ∈ C∞0 (V ) such that φk → v − u in

W 1,1(V ) as k →∞. Once u is weak solution to (10), we have�
V

2e|∇u|
2∇u∇φk dx = 0 ∀ k ∈ N.

Letting k →∞, we obtain�
V

2e|∇u|
2∇u∇(v − u) dx = 0. (20)

Combining (19) with (20) yields

JV (v) =

�
V

e|∇v|
2

dx ≥ JV (u)

for every v ∈ W 1,1(V ) such that v − u ∈ W 1,1
0 (V ). This finishes the proof of

(d).
We now prove (d) ⇒ (a). Suppose u is a local minimizer of (9). From

the main result in [19], it follows that u ∈ C2(Ω) and is a classical solution
to (10).

It remains to prove that (a) ⇐⇒ (e). We first prove that (a) ⇒ (e).
Assume that u ∈ C2(Ω) is a classical solution to (10). Let ϕ ∈ C2(Ω) be such
that u−ϕ has a local maximum at x0, then∇u(x0) = ∇ϕ(x0) and the Hessian
matrix D2(u − ϕ)(x0) is negative-semidefinite, that is, D2u(x0) ≤ D2ϕ(x0).
Thus,

L∞ϕ(x0) = 2∆∞ϕ(x0) + ∆ϕ(x0)

= 2〈D2ϕ(x0)∇ϕ(x0),∇ϕ(x0)〉+ ∆ϕ(x0)

≥ 2〈D2u(x0)∇u(x0),∇u(x0)〉+ ∆u(x0)

= L∞u(x0)

= 0,

therefore u is a viscosity subsolution to (10). If we now assume that u − ϕ
has a local minimum at x0, then ∇u(x0) = ∇ϕ(x0) and D2u(x0) ≥ D2ϕ(x0).
Repeating the argument above, we find

L∞ϕ(x0) ≤ L∞u(x0) = 0,

which implies that u is a viscosity supersolution to (10). Hence, u is a
viscosity solution to (10), and (e) is proved. We now prove that (e) ⇒ (a).
Let u ∈ C1(Ω) be a viscosity solution to (10). We observe that the equation
(10) can be written as

Tr
(
A(x)D2u(x)

)
= 0, x ∈ Ω,

12
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where A(x) = X(x) ⊗ X(x) + In, with In being the n × n-identity ma-
trix, X(x) =

√
2∇u(x), and Tr is the trace operator. Let V ⊂⊂ Ω, δV :=

dist(V, ∂Ω), andW = {x ∈ Ω : dist(x, ∂V ) < δV /4} ⊂⊂ Ω. Since u ∈ C1(Ω),
LW := ‖∇u‖L∞(W ) <∞. By item 1 of Lemma 2.3, A is uniformly elliptic in
W with ellipticity constants given by 1 and 1 + 2L2

W . Set

ω(r) :=
√

2 sup
x,y∈W, |x−y|<r

|∇u(x)−∇u(y)|.

Applying Lemma 2.3 to X in W , we have

|A(x)− A(y)| ≤ 2LW · ω(|x− y|), ∀x, y ∈ W.

As a consequence, for every x0 ∈ V and for every r ≤ r0 := δV /4, we have( 
Br(x0)

|A(x)− A(x0)|n dx
) 1

n

≤ 2LW · ω(r).

Hence,

lim
r→0+

( 
Br(x0)

|A(x)− A(x0)|n dx
) 1

n

= 0 uniformly for x0 ∈ V .

Now Caffarelli’s C1,α-regularity theorem (Theorem 8.3 in [10]) implies that
solution u is C1,α(V ) for every α ∈ (0, 1), with C1,α-estimates in W depend-
ing on W itself and α. Since A ∈ Cα(W ), By Caffarelli-Schauder theory
(Theorem 8.1 and Remark 3), u ∈ C2,α(W ) with estimates. Since u ∈ C2(V )
and is a viscosity solution, Lemma 2.5 in [10] implies that u is a classical
solution. Combining this with the classical bootstrap argument, we conclude
that u ∈ C∞(V ). As V ⊂⊂ Ω is arbitrary, we obtain that u ∈ C∞(Ω). This
finishes the proof of (a).

3 Truncated equation

We begin with a truncation argument to introduce a suitable Lieberman’s
class. The purpose here is to recover the uniform ellipticity for Lipschitz
solutions.

Proposition 3.1. Let g ∈ Cδ for some δ > 0 and L > 0. Set

DL(t) :=

{
g′(t), 0 < t < L
g′(L), t ≥ L.

13
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Then DL ∈ L1[0, t] for every t > 0. Assume now that

sup
t∈(0,L]

Qg(t) =: ML < +∞,

and define

g
L
(t) :=

� t

0

DL(s) ds, t ≥ 0.

Then g
L
∈ CδL,gL0 with δL := min{1, δ} and gL0 := max{1,ML}.

Proof. We start with the observation that 0 ≤ DL ∈ L∞loc(0,∞). In order to
prove the first claim, it is enough to show that DL ∈ L1[0, L]. Indeed, let
0 < ε < L. Then� L

ε

|DL(s)| ds =

� L

ε

g′(s) ds = g(L)− g(ε).

Letting ε → 0+ and using the Monotone Convergence Theorem and the
continuity of g at 0, we conclude that DL ∈ L1[0, L]. Furthermore, by the
absolute continuity of the Lebesgue integral (Proposition 1.12 in [26]), we
have

g
L
(0) = lim

t→0+
g
L
(t) = 0.

Hence, g
L
∈ C0[0,∞). Now, by the Fundamental Theorem of Calculus,

g′
L
(t) =

{
g′(t), 0 < t < L
g′(L), t ≥ L.

Hence g
L
∈ C1(0,+∞) and g

L
satisfies (g1). Furthermore,

g
L
(t) =

� t

0

DL(s)ds > 0 if t > 0

and for t > L we have

g
L
(t) =

� L

0

DL(s)ds+

� t

L

DL(s)ds

=

� L

0

g′(s)ds+

� t

L

g′(L)ds

= g(L) + g′(L)(t− L) (21)

≥ g′(L)(t− L).

Hence,
lim
t→+∞

g
L
(t) = +∞,

and we conclude that g
L

satisfies (g2). We now observe that

14
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(A) For 0 < t < L, g
L
(t) =

� t
0
g′(s)ds = g(t) and

Qg
L

(t) =
tg′

L
(t)

g
L
(t)

=
tDL(t)

g
L
(t)

=
tg′(t)

g(t)
≥ δ.

Moreover, by assumption Qg
L

(t) ≤ML for every t ∈ (0, L]. Hence

δ ≤ Qg
L

(t) ≤ML ∀ t ∈ (0, L]. (22)

(B) For t ≥ L, by (21), we have

Qg
L

(t) =
tg′

L
(t)

g
L
(t)

=
tg′(L)

g(L) + g′(L)(t− L)
.

Now,

Q′g
L

(t) =
Lg′(L)2

[g(L) + g′(L)(t− L)]2

(
g(L)

Lg′(L)
− 1

)
.

There are two cases to consider:

(a)
g(L)

Lg′(L)
≥ 1,

(b)
g(L)

Lg′(L)
< 1.

If (a) holds then Qg
L

is increasing in [L,∞). Thus,

inf
t∈[L,∞)

Qg
L

(t) = lim
t→L+

Qg
L

(t) = Qg
L

(L) =
Lg′(L)

g(L)
≥ δ,

sup
t∈[L,∞)

Qg
L

(t) = lim
t→∞

Qg
L

(t) = 1.

If (b) holds then Qg
L

is decreasing in [L,∞). Thus

inf
t∈[L,∞)

Qg
L

(t) = lim
t→∞

Qg
L

(t) = 1,

sup
t∈[L,∞)

Qg
L

(t) = lim
t→L+

Qg
L

(t) = Qg
L

(L) ≤ML.

Consequently,

min{1, δ} ≤ Qg
L

(t) ≤ max{1,ML} ∀ t ≥ L. (23)

Now (22) and (23) together imply

δL ≤ Qg
L

(t) ≤ gL0 ∀ t > 0,

and g
L
∈ CδL,gL0 as required.

15
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Remark 3.2. We observe that for φ(t) = 2tet
2
, by (4),

Qφ(t) = 1 + 2t2 ≥ 1 =: δ.

In particular,
ML := sup

t∈(0,L]

Qφ(t) = 1 + 2L2.

Therefore, the truncated function φ
L
∈ Cmin{δ,1},max{1,ML} = C1,ML

.

Now, we show the equivalence of solutions with the truncation equation.

Proposition 3.3. Let g ∈ Cδ for some δ > 0 and assume that for some
L > 0, we have

ML := sup
t∈(0,L]

Qg(t) < +∞.

Assume that for some open set V ⊂ Rn the function u ∈ W 1,∞(V ) with

‖∇u‖L∞(V ) ≤ L.

Then, u is a weak solution to

Lg(u) = div

(
g(|∇u|)
|∇u|

∇u
)

= 0 in V

if only if u is a weak solution to the truncated equation

Lg
L

(u) = div

(
g
L
(|∇u|)
|∇u|

∇u
)

= 0 in V,

where g
L
∈ CδL,gL0 .

Proof. Since u ∈ W 1,∞(V ), we have g(|∇u|) ∈ L∞(V ). Now, for every
ϕ ∈ C∞0 (V ), we have�

V

g(|∇u|)
|∇u|

∇u∇ϕdx =

[�
V ∩{|∇u|>L}

+

�
V ∩{|∇u|≤L}

]
g(|∇u|)
|∇u|

∇u∇ϕdx.

(24)
Since u ∈ W 1,∞(V ) and ‖∇u‖L∞(V ) ≤ L, it follows that |V ∩{|∇u| > L}| = 0.
Thus, once g(|∇u|)|∇ϕ| ∈ L1(V ), we have�

V ∩{|∇u|>L}

g(|∇u|)
|∇u|

∇u∇ϕdx = 0. (25)

The proposition follows now from the identity�
V ∩{|∇u|≤L}

g(|∇u|)
|∇u|

∇u∇ϕdx =

�
V

g
L
(|∇u|)
|∇u|

∇u∇ϕdx.

The proof is complete.
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4 Barrier

In this section, we construct barriers by borrowing ideas from the arguments
employed in the proof of Theorem 1.7 in [23]. They are supersolutions for
the operator L∞. Moreover, we show they possess similar geometry as those
barriers constructed in [8, 9], except they are flipped upside down.

Proposition 4.1. Assume ρ ∈ (0, 1), R > 0 and Aρ,R := BR \ BρR. Given
M ≥ 0, there exists ΓM+ ∈ C∞(Aρ,R) such that:

(i) ΓM+

∣∣∣
∂BR

= M and ΓM+

∣∣∣
∂BρR

= 0;

(ii) There exists a constant C > 0 depending only n and ρ such that

L∞ΓM+ ≤ −C
M

R2
≤ 0 in Aρ,R;

(iii) There exist C1, C2 > 0 depending only on n and ρ such that

C1
M

R
d(x, ∂BρR) ≤ ΓM+ (x) ≤ C2

M

R
d(x, ∂BρR) ∀x ∈ Aρ,R;

C1
M

R
≤ |∇ΓM+ (x)| ≤ C2

M

R
∀x ∈ Aρ,R.

Proof. The proof follows very closely the proof of Theorem 1.7 in [23]. Let

ΓM+ (x) := M − ΓMR (x), x ∈ Aρ,R, (26)

where ΓMR is the function given by Theorem 1.7 in [23], i.e.,

ΓMR (x) = v(R− |x|), x ∈ Aρ,R, (27)

where v(t) := α(eβt − 1), t ∈ R, and

α :=
M

eβ(1−ρ)R − 1
and β :=

2(n− 1)

ρR
. (28)

Clearly, ΓM+ ∈ C∞(Aρ,R). Moreover, since ΓMR |∂BR = 0 and ΓMR |∂BρR = M , we

have ΓM+

∣∣∣
∂BR

= M and ΓM+

∣∣∣
∂BρR

= 0, which proves (i). By (ii) of Theorem

1.7 in [23], there exists a constant C > 0 depending only on n and ρ such
that

L∞ΓMR ≥ C
M

R2
≥ 0 in Aρ,R.

17
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Consequently,

L∞ΓM+ = L∞
(
M − ΓMR (x)

)
≤ −CM

R2
≤ 0 in Aρ,R,

which shows that (ii) holds. Now, we prove (iii). We set

ψ(t) := M − v(R− t), t ∈ R. (29)

We observe that

ψ(ρR) = 0,

ψ′(t) = v′(R− t) = αβeβ(R−t) > 0,∀t ∈ R,
ψ′′(t) = −αβ2eβ(R−t) < 0,∀t ∈ R.

Therefore, ψ is a (strictly) concave function, which implies for all t ∈ R

ψ(t) ≤ ψ(ρR)+ψ′(ρR)(t−ρR) = ψ′(ρR)(t−ρR) = αβeβ(1−ρ)R(t−ρR). (30)

By (26), (27), and (29),

ΓM+ (x) = M − v(R− |x|) = ψ(|x|), ∀x ∈ Aρ,R.

This way, by (28) and (30), we obtain

ΓM+ (x) = ψ(|x|) ≤ ψ′(ρR) · (|x| − ρR)

= αβeβ(1−ρ)R · dist(x, ∂BρR)

≤
(

2(n− 1)e2(n−1)(1−ρ)/ρ

ρ(e2(n−1)(1−ρ)/ρ − 1)

)
· M
R
· d(x, ∂BρR), ∀x ∈ Aρ,R.

On the other hand, given t ∈ (ρR,R), by the mean value theorem, there
exists ξt ∈ (ρR, t) such that

ψ(t) = ψ(t)− ψ(ρR) = ψ′(ξt)(t− ρR)

= αβeβ(R−ξt)(t− ρR) ≥ αβ(t− ρR). (31)

Hence, by (31), we have

ΓM+ (x) = ψ(|x|) ≥ αβ(|x| − ρR)

≥
(

2(n− 1)

ρ(e2(n−1)(1−ρ)/ρ − 1)

)
· M
R
· d(x, ∂BρR), ∀x ∈ Aρ,R.

In order to show the gradient estimates in (iii), by (iii) of Theorem 1.7 in
[23], we have

2(n− 1)

ρ[e2(n−1)(1−ρ)/ρ − 1]

M

R
≤ |∇ΓMR (x)| ≤ 2(n− 1)e2(n−1)(1−ρ)/ρ

ρ[e2(n−1)(1−ρ)/ρ − 1]

M

R
,

for every x ∈ Aρ,R. Since |∇ΓM+ (x)| = |∇ΓMR (x)|, this finishes the proof.
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5 Boundary gradient estimates

The boundary estimates used in this paper are gathered in the following
proposition. We single out item (b) as it corresponds to the interior gradient
estimate established in [23] and serves as the key element for establishing the
classification result.

Proposition 5.1 (Gradient estimates on the boundary). Let u ∈ C1(B+
R) ∩

C0
vfb(B

+
R) be a viscosity solution to

L∞u = 0 in B+
R .

Then, the following estimates hold

(a) |u(x)| ≤ C

(
‖u‖L∞(B+

R)

R

)
xn, ∀x ∈ B+

R/2 and for some C = C(n) > 0.

(b) ‖∇u‖L∞(B+
R/4

) ≤ C

(
1 +
‖u‖L∞(B+

R)

R

)
for some C = C(n) > 0.

(c) If
|u(x)| ≤ K|x| ∀x ∈ B+

R , (32)

then u ∈ C∞(B+
R/4) and it is a classical solution to L∞(u) = 0 in B+

R/4.

Moreover, there exist α = α(K,n) ∈ (0, 1) and C = C(K,n) > 0 such
that

‖u‖∗
C1,α

(
B+
R/8

) ≤ C‖u‖L∞(B+
R), (33)

where

‖u‖∗
C1,α(B+

r ) := ‖u‖L∞(B+
r ) + r‖∇u‖L∞(B+

r ) + r1+α[∇u]C0,α(B+
r ).

Proof. We begin by proving the proposition for the case where R = 1. In-
voking Theorem 1.2, the function u is a classical solution to

L∞u = 0 in B+
1 .

Let M := ‖u‖L∞(B+
1 ). For simplicity of notation, we write x = (x′, xn) instead

of x = (x1, . . . , xn−1, xn). Define

Q =

{
x = (x′, xn) ∈ Rn

+ : |x′| ≤ 3

4
, 0 < xn <

1

4

}
.
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Given x0 = (x′0,− 1
16

) with |x′0| ≤ 3
4
, consider the function ΓM+ ∈ C∞(A 1

2
, 2
16

)

given by Proposition 4.1, where A 1
2
, 2
16

= B 2
16

(x0) \B 1
16

(x0). Thus,

u(z) ≤ ΓM+ (z) ∀z ∈ ∂
(
B 2

16
(x0) ∩ Rn

+

)
,

and
L∞ΓM+ ≤ 0 = L∞u in B 2

16
(x0) ∩ Rn

+.

Due to the regularity theorem (Theorem 1.2), here we are entitled to use the
comparison principle for classical solutions to quasilinear equations, namely,
Theorem 10.1 in [13], to conclude that

u(z) ≤ ΓM+ (z) ∀ z ∈ B 2
16

(x0) ∩ Rn
+.

Thus, for every x = (x′0, xn), where 0 < xn ≤ 1
16

, we have x ∈ B 2
16

(x0) ∩ Rn
+.

By Proposition 4.1 (iii), we have

u(x) ≤ ΓM+ (x) ≤ C2Md(x, ∂B 1
16

(x0)) = C2M |x− (x′0, 0)| = C2Mxn,

for some constant C2 = C2(n) > 0. As L∞(−u) = −L∞u, we have L∞(±u) =
0 in B+

1 . The argument above can also be applied to −u. Consequently, we
conclude that

|u(x)| ≤ C2Mxn ∀x ∈ Q∗, (34)

where

Q∗ =

{
x = (x′, xn) ∈ Rn

+ : |x′| ≤ 3

4
, 0 < xn ≤

1

16

}
.

We claim that there exists C̃2 > 0 such that

|u(x)| ≤ C̃2Mxn ∀x ∈ Q+
1
2

, (35)

where

Q+
1
2

=

{
x = (x′, xn) ∈ Rn

+ : |x′| ≤ 1

2
, 0 < xn ≤

1

2

}
.

Indeed, let x ∈ Q+
1
2

, we have two cases:

(i) 0 < xn ≤ 1
16

;

(ii) xn >
1
16

.
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For the case (i), x ∈ Q∗, and thus, |u(x)| ≤ C2Mxn by (34). For the case
(ii), if x ∈ Q+

1
2

,

|u(x)| ≤M = 16
M

16
< 16Mxn.

Taking C̃2 = max{C2, 16}, we obtain (35), as claimed. In particular, since
B+

1/2 ⊂ Q+
1
2

, we have

|u(x)| ≤ C̃2Mxn ∀x ∈ B+
1/2.

which proves (a) in the case R = 1.
In order to prove (b), let y0 = (y′0, y0n) ∈ Q+

1
4

, where

Q+
1
4

:=

{
x = (x′, xn) ∈ Rn

+ : |x′| ≤ 1

4
, 0 < xn ≤

1

4

}
.

Applying the interior gradient estimates (Theorem 1.5 in [23]) in By0n(y0),
we obtain

|∇u(y0)| ≤ ‖∇u‖L∞(B y0n
2

(y0)) ≤ C0

(
1 +
‖u‖L∞(By0n (y0))

y0n

)
, (36)

where C0 = C0(n) > 0. It is easy to see that the following inclusion holds:

By0n(y0) ⊂ Q+
1
2

for every y0 ∈ Q+
1
4

. Indeed, let z = (z′, zn) ∈ By0n(y0). Thus

zn ≤ 2y0n ≤ 2 · 1

4
=

1

2
.

Moreover, and

|z′| ≤ |z′ − y′0|+ |y′0| ≤ |z − y0|+ |y′0| < y0n + |y′0| ≤
1

4
+

1

4
=

1

2
.

Hence By0n(y0) ⊂ Q+
1
2

. By (35), for every x ∈ By0n(y0), we have

|u(x)| ≤ C̃2Mxn ≤ C̃2M2y0n.

Consequently,
‖u‖L∞(By0n (y0))

y0n

≤ 2C̃2M. (37)

From (36) and (37), we have

|∇u(y0)| ≤ C(1 +M) ∀ y0 ∈ Q+
1
4

,
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where C := C0(1 + 2C̃2). Since B+
1
4

⊂ Q+
1
4

, we have

|∇u(y)| ≤ C(1 +M) ∀y ∈ B+
1
4

.

Hence,

‖∇u‖L∞(B+
1/4

) ≤ C
(

1 + ‖u‖L∞(B+
1 )

)
, (38)

which proves (b) in the case R = 1.
Now, we prove (c). By (32), we have

sup
B+

1

|u| ≤ K. (39)

Combining (b) with (39), we obtain

‖∇u‖L∞(B+
1/4

) ≤ C
(

1 + ‖u‖L∞(B+
1 )

)
≤ C(1 +K) =: L. (40)

By Theorem 1.2, u is a weak solution to

Lφ(u) = div(2e|∇u|
2∇u) = 0 in B+

1 ,

where φ(t) = 2tet
2
. Using Remark 3.2 with L := C(1 + K), we have φ

L
∈

C1,ML
. By Proposition 3.3 implies that u is a weak solution to the truncated

equation

Lφ
L

(u) = div

(
φ
L
(|∇u|)
|∇u|

∇u
)

= 0 in B+
1/4,

and u ∈ W 1,∞(B+
1/4) ∩ C0

vfb(B
+
1/4). By using the Schwarz reflection principle

(Proposition 2.1 in [7]), the odd reflection ũ ∈ W 1,∞(B1/4) and it solves

Lφ
L

(ũ) = div

(
φ
L
(|∇ũ|)
|∇ũ|

∇ũ
)

= 0 in B1/4, (41)

in the distributional sense. By Lieberman’s C1,α-regularity theory [18, The-
orem 1.7], there exists α = α(K,n) ∈ (0, 1) such that ũ ∈ C1,α(B1/8) and

‖ũ‖C1,α(B1/8) ≤ C‖ũ‖L∞(B1/4) = C‖u‖L∞(B+
1/4

),

where C = C(K,n) > 0. Once ũ ≡ u in B+
1/4, we have

‖u‖C1,α(B+
1/8

) ≤ ‖ũ‖C1,α(B1/8) ≤ C‖ũ‖L∞(B+
1/4

) = C‖u‖L∞(B+
1/4

). (42)
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This proves estimate (33) in the where R = 1. Finally, due to (41) and (40),
the function ũ ∈ C1,α(B1/4) with ‖∇ũ‖L∞(B1/4) ≤ L. By Proposition 3.3, the
function ũ is a weak solution to

Lφ(ũ) = div

(
φ(|∇ũ|)
|∇ũ|

∇ũ
)

= 0 in B1/4.

By Theorem 1.2, ũ ∈ C∞(B1/4) and it is classical solution to L∞(ũ) = 0 in
B1/4. The same can be said about u in B+

1/4.

Let us prove the general case R > 0. Theorem 1.2 gives that u ∈ C∞(B+
R)

and it is a classical to L∞(u) = 0 in B+
R . Now define the rescaled function

v(z) =
u(Rz)

R
, z ∈ B+

1 .

Thus, v ∈ C∞(B+
1 ) ∩ C0

vfb(B
+
1 ). Moreover, since

L∞(v(z)) = RL∞(u(Rz)) ∀ z ∈ B+
1 .

Thus, v ∈ C1(B+
1 ) ∩ C0

vfb(B
+
1 ) and it is classical solution to L∞(v) = 0 in

B+
1 . In particular, v is a viscosity solution to L∞(v) = in B+

1 . We are now in
a position to apply the previously discussed case when R = 1 to the function
v. Items (a) and (b) applied to v give the following estimates

|v(z)| ≤ C‖v‖L∞(B+
1 )zn ∀ z ∈ B+

1/2, (43)

‖∇v‖L∞(B+
1/4

) ≤ C
(

1 + ‖v‖L∞(B+
1 )

)
. (44)

Now we observe that

‖v‖L∞(B+
1 ) =

1

R
‖u‖L∞(B+

R). (45)

Hence, (a) and (b) follow readily translating back the estimates (43) and (44)
taking into account (45). Regarding the item (c), we observe that v satisfies

the growth condition (32). Now, (c) applied to v, yields v ∈ C∞(B+
1/4).

This clearly implies that u ∈ C∞(B+
R/4) since they differ essential by scaling.

Additionally, item (c) applied to v gives

‖v‖
C1,α

(
B+

1/8

) ≤ C‖v‖L∞(B+
1 ),

Finally, once more estimate (33) follows translating back the estimate above
in terms of u and recalling (45) and

‖v‖C1,α(B+
1/8

) =
1

R
‖u‖∗

C1,α(B+
R/8

)

This finishes the proof of (c) in the case R > 0.
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6 Proof of Theorem 1.1

Proof of Theorem 1.1. Let u ∈ C1(Rn
+)∩C0

vfb(Rn
+) be a viscosity solution to

(7) satisfying (8). We claim that there exists L > 0 such that

sup
Rn+
|∇u| ≤ L.

Indeed, the claim is trivial if u ≡ 0. Suppose u 6≡ 0. By (8), there exist
K > 0 and R0 > 0 such that

|u(x)| ≤ K|x| ∀x ∈ Rn
+, |x| ≥ R0. (46)

For every R ≥ R0, Proposition 5.1 (b) gives a positive constant C0 = C0(n)
for which

‖∇u‖L∞(B+
R/4

) ≤ C0

(
1 +
‖u‖L∞(B+

R)

R

)
. (47)

By the regularity theorem (Theorem 1.2), u is a classical solution to (7).
Now, we can use the classical maximum principle for quasilinear equations
(Theorem 10.3 in [13]). This way, since u 6≡ 0, there exists ξR ∈ ∂B+

R ∩ Rn
+

such that
max
B+
R

|u| ≤ max
∂B+

R

|u| = |u(ξR)|. (48)

From (46) and (48), it follows that

max
B+
R

|u| = |u(ξR)| ≤ K|ξR| = KR ∀R ≥ R0. (49)

Combining (47) with (49), yields

‖∇u‖L∞(B+
R/4

) ≤ C0

(
1 +

KR

R

)
= C0 (1 +K) ∀R ≥ R0.

Letting R→∞, we obtain

‖∇u‖L∞(Rn+) ≤ C0 (1 +K) =: L.

This finishes the proof of the claim. For every x = (x′, xn) ∈ Rn
+, let x̄ =

(x′, 0). By the mean value theorem, we have, for some ξx ∈ [x, x̄] ⊂ Rn
+,

|u(x)| = |u(x)− u(x̄)| = |∇u(ξx) · (x− x̄)| ≤ Lxn ≤ L|x|. (50)

Let R > 0 and x ∈ B+
R . Due to estimate (50), we can use Proposition 5.1 (c)

to obtain
R1+α[∇u]Cα(B+

R/8
) ≤ C‖u‖L∞(B+

R) ≤ CLR,
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where C = C(n, L) > 0. Thus,

[∇u]Cα(B+
R/8

) ≤
CL

Rα
.

Letting R → ∞, we obtain [∇u]Cα(Rn+) = 0, and hence u is affine, that is,
u(x) = A ·x+b, with A = (A1, . . . , An). Since b = u(0) = 0, then u(x) = A ·x
for every x ∈ R+

n . Once 0 = u(ei) = A · ei = Ai for i = 1, . . . , n − 1. This
way,

u(x) = Anxn = u(en)xn ∀x ∈ Rn
+.

This finishes the proof of Theorem 1.1.

7 Proof of the results in the applications

This section is devoted to proving the results in the applications.

Proof of Theorem 1.3. Due to the regularity theorem (Theorem 1.2), u is
a classical solution to (13) in Rn. Moreover, the interior gradient estimate for
equation (13) (Theorem 1.5 in [23]) gives a universal constant C0 = C0(n) > 0
such that

‖∇u‖L∞(BR/2) ≤ C0

(
1 +
‖u‖L∞(BR)

R

)
. (51)

By (12), there exist positive real numbers K and R0 such that

|u(x)| ≤ K|x| whenever x ∈ Rn, |x| ≥ R0.

In particular,
sup
BR

|u| ≤ KR ∀R ≥ R0. (52)

Combining (51) with (52), yields

‖∇u‖L∞(BR/2) ≤ C0

(
1 +

KR

R

)
= C0 (1 +K) ∀R ≥ R0.

Letting R→∞, we obtain

‖∇u‖L∞(Rn) ≤ C0 (1 +K) =: L.

By Theorem 1.2 and Proposition 3.3, u is a weak solution to the truncated
equation

Lφ
L

(u) = div

(
φ
L
(|∇u|)
|∇u|

∇u
)

= 0 in Rn,

25



Liouville Theorem for Quasilinear Elliptic Equations

where φ
L
∈ C1,ML

, with ML = 1 + 2L2 (Remark 3.2). In particular, u ∈
W 1,∞(Rn) ⊂ W 1,ΦL(BR), where ΦL(t) =

� t
0
φ
L
(s)ds. From Lieberman’s C1,α-

regularity (Theorem 1.7 in [18]), there exist α = α(L, n) ∈ (0, 1) and C =
C(L, n) > 0 such that

‖u‖∗
C1,α(BR/2)

≤ C‖u‖L∞(BR). (53)

From (12) and the maximum principle (Theorem 10.3 in [13]) applied to
L∞u = 0 in BR,

‖u‖L∞(BR) = O(R) = o(R1+α) = R1+αo(1) as R→∞. (54)

Due to (53),
R1+α[∇u]C0,α(BR/2) ≤ C‖u‖L∞(BR). (55)

From (54) and (55), we obtain

[∇u]C0,α(BR/2) = o(1) as R→∞.

Let x ∈ Rn. Take R > 0 so that |x| ≤ R/2. Then,

|∇u(x)−∇u(0)| ≤ [∇u]C0,α(BR/2)|x|
α.

Letting R → ∞ in the estimate above, we obtain ∇u(x) = ∇u(0) for every
x ∈ Rn, and, as a consequence, u is affine. This finishes the proof of Theorem
1.3.

Proof of Corollary 1.5. Let u ∈ C1(Ω) be a viscosity solution to

L∞u = 0 in Ω \ {x ∈ Ω : u(x) = 0}.

By Theorem 2.3 in [15], u is a viscosity solution in the whole Ω. By Theorem
1.2, u ∈ C∞(Ω) and it is a classical solution to (10) in the whole Ω.

Proof of Corollary 1.6. The proof is inspired by Proposition 7.1 in [3].
We begin by proving that L∞U = 0 in BR in viscosity sense. It is enough to

test the definition of viscosity solutions in points belonging to B−R . We only
treat the subsolution case since the supersolution one is analogous. For that,

let x0 ∈ B−R , A be an open neighborhood of x0, and φ ∈ C2(BR) such that

φ(x) ≥ U(x) ∀x ∈ A, φ(x0) = U(x0). (56)

We now divide the proof in two cases as follows.
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Case 1 (x0 ∈ B−R): Let δ > 0 such that Bδ(x0) ⊂⊂ B−R . Clearly

φ(x) ≥ U(x) ∀x ∈ Bδ(x0), φ(x0) = U(x0).

Now, we put R the reflection R(x′, xn) = (x′,−xn) and set ψ : Bδ(x0) → R
by ψ(x′, xn) = −φ(R(x′, xn)) = −φ(x′,−xn). Clearly, R(R(x)) = x for all
x ∈ Rn. Now, we claim that ψ satisfies

ψ(x) ≤ u(x) ∀x ∈ Bδ(R(x0)), ψ(R(x0)) = u(R(x0)). (57)

Indeed,

ψ(R(x0)) = −φ(R(R(x0))) = −U(x0) = −(−u(R(x0))) = u(R(x0)).

Moreover, for all x ∈ Bδ(R(x0)) ⊂⊂ B+
R , we have R(x) ∈ R(Bδ(R(x0))) =

Bδ(x0). This way, for every x ∈ Bδ(R(x0)), we have

ψ(x) = −φ(R(x)) ≤ −U(R(x)) = −(−u(R(R(x)))) = u(x).

By (57) and the fact that u is a viscosity solution, an immediate computations
show

0 ≥ L∞ψ(R(x0)) = −L∞φ(x0).

This finishes the proof of Case 1.

Case 2 (x0 ∈ ∂B−R ∩ {xn = 0}): Let δ > 0 such that Bδ(x0) ⊂ A. We start
observing that

φ(x0) = 0 and φ(z) ≥ U(z) = 0 ∀ z ∈ Bδ(x0) ∩ {xn = 0} =: B′δ(x0).

This way, x0 is a local minimum of φ on B′δ(x0). In particular

∆n−1φ(x0) =
n−1∑
i=1

φxixi(x0) ≥ 0. (58)

Moreover, direct computation shows that

∆∞φ(x0) = φxnxn(x0)(φxn(x0))2.

From this, we obtain

L∞φ(x0) = 2φxnxn(x0)(φxn(x0))2 + ∆n−1φ(x0) + φxnxn(x0)

≥ 2φxnxn(x0)(φxn(x0))2 + φxnxn(x0).
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In order to conclude the Case 2, it is enough to show that φxnxn(x0) ≥ 0. We
now start to do this. Let 0 < t < δ. By Taylor’s expansion, we have

u(x0 + ten) = U(x0 + ten) ≤ φ(x0 + ten) = φxn(x0)t+
1

2
φxnxn(x0)t2 + o(t2).

(59)
Now

U(x0 − ten) ≤ φ(x0 − ten) = −φxn(x0)t+
1

2
φxnxn(x0)t2 + o(t2). (60)

On the other hand, by definition of U and (59), we have

U(x0 − ten) = −u(x0 + ten) ≥ −φxn(x0)t− 1

2
φxnxn(x0)t2 − o(t2). (61)

From (60) and (61), we obtain

φxnxn(x0) ≥ o(t2)

t2
= o(1).

Letting t → 0+ in the last inequality, it follows that φxnxn(x0) ≥ 0. This
finishes the proof of Case 2.

For the second part, it is enough to prove that U ∈ C1(BR). Clearly, U ∈
C1(B+

R) ∩ C1(B−R). Hence, it only remains to prove that U is differentiable
and the gradient is continuous on every point belonging to B′R. In order to

do that, let us take x0 ∈ B′R. Since u ∈ C0
vfb(B

+
R) ∩ C1(B+

R−ε) for every
0 < ε < R, we have

u(x) = uxn(x0)xn + o(|x− x0|) ∀x ∈ B+
R . (62)

Thus, if x ∈ B−R then R(x) ∈ B+
R . By (62), we have

u(R(x)) = uxn(x0)(−xn) + o(|R(x)− x0|) ∀x ∈ B−R .

As U(x) = −u(R(x)) for x ∈ B−R , we have

U(x) = uxn(x0)xn + o(|R(x)− x0|) ∀x ∈ B−R .

Since |R(x)− x0| = |x− x0|, we obtain

U(x) = uxn(x0)xn + o(|x− x0|) ∀x ∈ B−R . (63)

From (62) and (63), we arrive at

U(x) = uxn(x0)xn + o(|x− x0|) if x = (x′, xn) ∈ BR, xn 6= 0.

From this, the conclusion of the corollary follows easily.
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