Long-range Ising models: contours, phase transitions and decaying fields (2025)
- Authors:
- USP affiliated authors: PROENÇA, RODRIGO BISSACOT - IME ; PEREIRA, LUCAS AFFONSO SILVA - IME
- Unidade: IME
- DOI: 10.4171/JEMS/1529
- Subjects: TRANSFORMAÇÕES GEOMÉTRICAS; GEOMETRIA
- Keywords: long-range Ising model; phase transitions; multiscale analysis; decaying fie
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of the European Mathematical Society
- ISSN: 1435-9855
- Volume/Número/Paginação/Ano: v. 27, n. 4, p. 1679–1714, 2025
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
AFFONSO, Lucas et al. Long-range Ising models: contours, phase transitions and decaying fields. Journal of the European Mathematical Society, v. 27, n. 4, p. 1679–1714, 2025Tradução . . Disponível em: https://doi.org/10.4171/JEMS/1529. Acesso em: 26 jan. 2026. -
APA
Affonso, L., Bissacot, R., Endo, E. O., & Handa, S. (2025). Long-range Ising models: contours, phase transitions and decaying fields. Journal of the European Mathematical Society, 27( 4), 1679–1714. doi:10.4171/JEMS/1529 -
NLM
Affonso L, Bissacot R, Endo EO, Handa S. Long-range Ising models: contours, phase transitions and decaying fields [Internet]. Journal of the European Mathematical Society. 2025 ; 27( 4): 1679–1714.[citado 2026 jan. 26 ] Available from: https://doi.org/10.4171/JEMS/1529 -
Vancouver
Affonso L, Bissacot R, Endo EO, Handa S. Long-range Ising models: contours, phase transitions and decaying fields [Internet]. Journal of the European Mathematical Society. 2025 ; 27( 4): 1679–1714.[citado 2026 jan. 26 ] Available from: https://doi.org/10.4171/JEMS/1529 - Multidimensional Contours à la Fröhlich-Spencer and Boundary Conditions for Quantum Spin Systems
- Ground states, phase transitions, chaos and large deviations at zero temperature on finite and countable Markov shifts
- A democracia uspiana avança
- Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields
- Phase transitions: stability and lack of regularity for g-functions
- Entropic repulsion and lack of the g-measure property for Dyson models
- Contour methods for long-range Ising models: weakening nearest-neighbor interactions and adding decaying fields
- Zero-temperature phase diagram for double-well type potentials in the summable variation class
- Counting contours on trees
- Quasi-invariant measures for generalized approximately proper equivalence relations
Informações sobre o DOI: 10.4171/JEMS/1529 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3229732.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
