Quasi-invariant measures for generalized approximately proper equivalence relations (2024)
- Authors:
- Autor USP: PROENÇA, RODRIGO BISSACOT - IME
- Unidade: IME
- DOI: 10.1016/j.jmaa.2024.128444
- Subjects: C* ÁLGEBRAS; GRUPOIDES
- Keywords: Radon-Nykodim problem; Generalized countable; Markov shifts; DLR measures; Groupoid; C∗-algebras; Thermodynamic formalism; Ruelle operator
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Mathematical Analysis and Applications
- ISSN: 0022-247X
- Volume/Número/Paginação/Ano: v. 538, artigo n. 128444, p. 1-46, 2024
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BISSACOT, Rodrigo et al. Quasi-invariant measures for generalized approximately proper equivalence relations. Journal of Mathematical Analysis and Applications, v. 538, n. artigo 128444, p. 1-46, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2024.128444. Acesso em: 19 fev. 2026. -
APA
Bissacot, R., Exel, R., Frausino, R., & Raszeja, T. (2024). Quasi-invariant measures for generalized approximately proper equivalence relations. Journal of Mathematical Analysis and Applications, 538( artigo 128444), 1-46. doi:10.1016/j.jmaa.2024.128444 -
NLM
Bissacot R, Exel R, Frausino R, Raszeja T. Quasi-invariant measures for generalized approximately proper equivalence relations [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 538( artigo 128444): 1-46.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128444 -
Vancouver
Bissacot R, Exel R, Frausino R, Raszeja T. Quasi-invariant measures for generalized approximately proper equivalence relations [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 538( artigo 128444): 1-46.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128444 - Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields
- Ground states, phase transitions, chaos and large deviations at zero temperature on finite and countable Markov shifts
- A democracia uspiana avança
- Zero-temperature chaos in bidimensional models with finite-range potentials
- Spectral radius of weighted endomorphisms on generalized countable Markov shifts
- Zero-temperature phase diagram for double-well type potentials in the summable variation class
- Contour methods for long-range Ising models: weakening nearest-neighbor interactions and adding decaying fields
- Entropic repulsion and lack of the g-measure property for Dyson models
- Phase transitions: stability and lack of regularity for g-functions
- Counting contours on trees
Informações sobre o DOI: 10.1016/j.jmaa.2024.128444 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3200099_-_Quasi-invariant... | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
