Entropic repulsion and lack of the g-measure property for Dyson models (2018)
- Authors:
- Autor USP: PROENÇA, RODRIGO BISSACOT - IME
- Unidade: IME
- DOI: 10.1007/s00220-018-3233-6
- Assunto: FÍSICA MATEMÁTICA
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Heidelberg
- Date published: 2018
- Source:
- Título: Communications in Mathematical Physics
- ISSN: 0010-3616
- Volume/Número/Paginação/Ano: v. 363, n. 3, p. 767-788, 2018
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
- Licença: other-oa
-
ABNT
BISSACOT, Rodrigo et al. Entropic repulsion and lack of the g-measure property for Dyson models. Communications in Mathematical Physics, v. 363, n. 3, p. 767-788, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00220-018-3233-6. Acesso em: 27 dez. 2025. -
APA
Bissacot, R., Endo, E. O., van Enter, A. C. D., & Le Ny, A. (2018). Entropic repulsion and lack of the g-measure property for Dyson models. Communications in Mathematical Physics, 363( 3), 767-788. doi:10.1007/s00220-018-3233-6 -
NLM
Bissacot R, Endo EO, van Enter ACD, Le Ny A. Entropic repulsion and lack of the g-measure property for Dyson models [Internet]. Communications in Mathematical Physics. 2018 ; 363( 3): 767-788.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1007/s00220-018-3233-6 -
Vancouver
Bissacot R, Endo EO, van Enter ACD, Le Ny A. Entropic repulsion and lack of the g-measure property for Dyson models [Internet]. Communications in Mathematical Physics. 2018 ; 363( 3): 767-788.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1007/s00220-018-3233-6 - Phase transitions: stability and lack of regularity for g-functions
- Quasi-invariant measures for generalized approximately proper equivalence relations
- Contour methods for long-range Ising models: weakening nearest-neighbor interactions and adding decaying fields
- Zero-temperature phase diagram for double-well type potentials in the summable variation class
- Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields
- Ground states, phase transitions, chaos and large deviations at zero temperature on finite and countable Markov shifts
- A democracia uspiana avança
- Zero-temperature chaos in bidimensional models with finite-range potentials
- Counting contours on trees
- Stability of the phase transition of critical-field Ising model on Cayley trees under inhomogeneous external fields
Informações sobre o DOI: 10.1007/s00220-018-3233-6 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2913039.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
