Zero-temperature phase diagram for double-well type potentials in the summable variation class (2018)
- Authors:
- Autor USP: PROENÇA, RODRIGO BISSACOT - IME
- Unidade: IME
- DOI: 10.1017/etds.2016.57
- Subjects: TEORIA ERGÓDICA; SISTEMAS DINÂMICOS
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Ergodic Theory and Dynamical Systems
- ISSN: 0143-3857
- Volume/Número/Paginação/Ano: v. 38, n. 3, p. 863-885, 2018
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
BISSACOT, Rodrigo e GARIBALDI, Eduardo e THIEULLEN, Philippe. Zero-temperature phase diagram for double-well type potentials in the summable variation class. Ergodic Theory and Dynamical Systems, v. 38, n. 3, p. 863-885, 2018Tradução . . Disponível em: https://doi.org/10.1017/etds.2016.57. Acesso em: 27 dez. 2025. -
APA
Bissacot, R., Garibaldi, E., & Thieullen, P. (2018). Zero-temperature phase diagram for double-well type potentials in the summable variation class. Ergodic Theory and Dynamical Systems, 38( 3), 863-885. doi:10.1017/etds.2016.57 -
NLM
Bissacot R, Garibaldi E, Thieullen P. Zero-temperature phase diagram for double-well type potentials in the summable variation class [Internet]. Ergodic Theory and Dynamical Systems. 2018 ; 38( 3): 863-885.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1017/etds.2016.57 -
Vancouver
Bissacot R, Garibaldi E, Thieullen P. Zero-temperature phase diagram for double-well type potentials in the summable variation class [Internet]. Ergodic Theory and Dynamical Systems. 2018 ; 38( 3): 863-885.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1017/etds.2016.57 - Phase transitions: stability and lack of regularity for g-functions
- Quasi-invariant measures for generalized approximately proper equivalence relations
- Contour methods for long-range Ising models: weakening nearest-neighbor interactions and adding decaying fields
- Entropic repulsion and lack of the g-measure property for Dyson models
- Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields
- Ground states, phase transitions, chaos and large deviations at zero temperature on finite and countable Markov shifts
- A democracia uspiana avança
- Zero-temperature chaos in bidimensional models with finite-range potentials
- Counting contours on trees
- Stability of the phase transition of critical-field Ising model on Cayley trees under inhomogeneous external fields
Informações sobre o DOI: 10.1017/etds.2016.57 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2868857.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
