Contour methods for long-range Ising models: weakening nearest-neighbor interactions and adding decaying fields (2018)
- Authors:
- Autor USP: PROENÇA, RODRIGO BISSACOT - IME
- Unidade: IME
- DOI: 10.1007/s00023-018-0693-3
- Assunto: FÍSICA MATEMÁTICA
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Annales Henri Poincaré
- ISSN: 1424-0637
- Volume/Número/Paginação/Ano: v. 19, n. 8, p. 2557-2574, 2018
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
- Licença: other-oa
-
ABNT
BISSACOT, Rodrigo et al. Contour methods for long-range Ising models: weakening nearest-neighbor interactions and adding decaying fields. Annales Henri Poincaré, v. 19, n. 8, p. 2557-2574, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00023-018-0693-3. Acesso em: 28 dez. 2025. -
APA
Bissacot, R., Endo, E. O., Aernout C. D. van Enter,, Kimura, B., & Ruszel, W. M. (2018). Contour methods for long-range Ising models: weakening nearest-neighbor interactions and adding decaying fields. Annales Henri Poincaré, 19( 8), 2557-2574. doi:10.1007/s00023-018-0693-3 -
NLM
Bissacot R, Endo EO, Aernout C. D. van Enter, Kimura B, Ruszel WM. Contour methods for long-range Ising models: weakening nearest-neighbor interactions and adding decaying fields [Internet]. Annales Henri Poincaré. 2018 ; 19( 8): 2557-2574.[citado 2025 dez. 28 ] Available from: https://doi.org/10.1007/s00023-018-0693-3 -
Vancouver
Bissacot R, Endo EO, Aernout C. D. van Enter, Kimura B, Ruszel WM. Contour methods for long-range Ising models: weakening nearest-neighbor interactions and adding decaying fields [Internet]. Annales Henri Poincaré. 2018 ; 19( 8): 2557-2574.[citado 2025 dez. 28 ] Available from: https://doi.org/10.1007/s00023-018-0693-3 - Phase transitions: stability and lack of regularity for g-functions
- Quasi-invariant measures for generalized approximately proper equivalence relations
- Entropic repulsion and lack of the g-measure property for Dyson models
- Zero-temperature phase diagram for double-well type potentials in the summable variation class
- Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields
- Ground states, phase transitions, chaos and large deviations at zero temperature on finite and countable Markov shifts
- A democracia uspiana avança
- Zero-temperature chaos in bidimensional models with finite-range potentials
- Counting contours on trees
- Stability of the phase transition of critical-field Ising model on Cayley trees under inhomogeneous external fields
Informações sobre o DOI: 10.1007/s00023-018-0693-3 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2894558.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
