Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields (2015)
- Authors:
- Autor USP: PROENÇA, RODRIGO BISSACOT - IME
- Unidade: IME
- DOI: 10.1007/s00220-014-2268-6
- Subjects: MECÂNICA ESTATÍSTICA; MODELO DE ISING
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Communications in Mathematical Physics
- ISSN: 0010-3616
- Volume/Número/Paginação/Ano: v. 337, n. 1, p. 41-53, 2015
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BISSACOT, Rodrigo et al. Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields. Communications in Mathematical Physics, v. 337, n. 1, p. 41-53, 2015Tradução . . Disponível em: https://doi.org/10.1007/s00220-014-2268-6. Acesso em: 19 fev. 2026. -
APA
Bissacot, R., Cassandro, M., Cioletti, L., & Presutti, E. (2015). Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields. Communications in Mathematical Physics, 337( 1), 41-53. doi:10.1007/s00220-014-2268-6 -
NLM
Bissacot R, Cassandro M, Cioletti L, Presutti E. Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields [Internet]. Communications in Mathematical Physics. 2015 ; 337( 1): 41-53.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1007/s00220-014-2268-6 -
Vancouver
Bissacot R, Cassandro M, Cioletti L, Presutti E. Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields [Internet]. Communications in Mathematical Physics. 2015 ; 337( 1): 41-53.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1007/s00220-014-2268-6 - Ground states, phase transitions, chaos and large deviations at zero temperature on finite and countable Markov shifts
- A democracia uspiana avança
- Quasi-invariant measures for generalized approximately proper equivalence relations
- Zero-temperature chaos in bidimensional models with finite-range potentials
- Spectral radius of weighted endomorphisms on generalized countable Markov shifts
- Zero-temperature phase diagram for double-well type potentials in the summable variation class
- Contour methods for long-range Ising models: weakening nearest-neighbor interactions and adding decaying fields
- Entropic repulsion and lack of the g-measure property for Dyson models
- Phase transitions: stability and lack of regularity for g-functions
- Counting contours on trees
Informações sobre o DOI: 10.1007/s00220-014-2268-6 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
