Infinite DLR measures and volume-type phase transitions on countable Markov shifts (2021)
- Authors:
- USP affiliated authors: PROENÇA, RODRIGO BISSACOT - IME ; BELTRÁN, ELMER RUSBERT CALDERÓN - IME
- Unidade: IME
- DOI: 10.1088/1361-6544/abf84d
- Subjects: TEORIA ERGÓDICA DA MEDIDA; DINÂMICA SIMBÓLICA
- Keywords: conformal measure; countable Markov shift; infinite DLR measure; volume-type phase transition
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: IOP Publishing
- Publisher place: Bristol
- Date published: 2021
- Source:
- Título: Nonlinearity
- ISSN: 0951-7715
- Volume/Número/Paginação/Ano: v. 34, n. 7, p. 4819-4843, 2021
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
- Licença: other-oa
-
ABNT
BELTRÁN, Elmer R e BISSACOT, Rodrigo e ENDO, Eric Ossami. Infinite DLR measures and volume-type phase transitions on countable Markov shifts. Nonlinearity, v. 34, n. 7, p. 4819-4843, 2021Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/abf84d. Acesso em: 27 dez. 2025. -
APA
Beltrán, E. R., Bissacot, R., & Endo, E. O. (2021). Infinite DLR measures and volume-type phase transitions on countable Markov shifts. Nonlinearity, 34( 7), 4819-4843. doi:10.1088/1361-6544/abf84d -
NLM
Beltrán ER, Bissacot R, Endo EO. Infinite DLR measures and volume-type phase transitions on countable Markov shifts [Internet]. Nonlinearity. 2021 ; 34( 7): 4819-4843.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1088/1361-6544/abf84d -
Vancouver
Beltrán ER, Bissacot R, Endo EO. Infinite DLR measures and volume-type phase transitions on countable Markov shifts [Internet]. Nonlinearity. 2021 ; 34( 7): 4819-4843.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1088/1361-6544/abf84d - Medidas DLR e transições de fase tipo volume em shifts de Markov com alfabeto enumerável
- Phase transitions: stability and lack of regularity for g-functions
- Quasi-invariant measures for generalized approximately proper equivalence relations
- Contour methods for long-range Ising models: weakening nearest-neighbor interactions and adding decaying fields
- Zero-temperature phase diagram for double-well type potentials in the summable variation class
- Entropic repulsion and lack of the g-measure property for Dyson models
- Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields
- Ground states, phase transitions, chaos and large deviations at zero temperature on finite and countable Markov shifts
- A democracia uspiana avança
- Zero-temperature chaos in bidimensional models with finite-range potentials
Informações sobre o DOI: 10.1088/1361-6544/abf84d (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3048141.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
