Exportar registro bibliográfico


Metrics:

Chemical composition and antifungal activity of essential oils and their combinations against Botrytis cinerea in strawberries (2021)

  • Authors:
  • Autor USP: BOGUSZ JUNIOR, STANISLAU - IQSC
  • Unidade: IQSC
  • DOI: 10.1007/s11694-020-00765-x
  • Subjects: ANTIFÚNGICOS; MORANGO
  • Keywords: Minimal inhibitory concentration; Natural antimicrobials; Gray mold Cymbopogon martinii; Mentha spicata
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s11694-020-00765-x (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      OLIVEIRA FILHO, Josemar Gonçalves de; SILVA, Guilherme da Cruz; AGUIAR, Aline Cristina de; et al. Chemical composition and antifungal activity of essential oils and their combinations against Botrytis cinerea in strawberries. Journal of Food Measurement and Characterization, Berlim, v. 15, p. 1815-1825, 2021. Disponível em: < https://doi.org/10.1007/s11694-020-00765-x > DOI: 10.1007/s11694-020-00765-x.
    • APA

      Oliveira Filho, J. G. de, Silva, G. da C., Aguiar, A. C. de, Cipriano, L., Azeredo, H. M. C. de, Bogusz Junior, S., et al. (2021). Chemical composition and antifungal activity of essential oils and their combinations against Botrytis cinerea in strawberries. Journal of Food Measurement and Characterization, 15, 1815-1825. doi:10.1007/s11694-020-00765-x
    • NLM

      Oliveira Filho JG de, Silva G da C, Aguiar AC de, Cipriano L, Azeredo HMC de, Bogusz Junior S, Ferreira MD, Bastos DHM, Alencar SM, Regitano-d’Arce MAB. Chemical composition and antifungal activity of essential oils and their combinations against Botrytis cinerea in strawberries [Internet]. Journal of Food Measurement and Characterization. 2021 ;15 1815-1825.Available from: https://doi.org/10.1007/s11694-020-00765-x
    • Vancouver

      Oliveira Filho JG de, Silva G da C, Aguiar AC de, Cipriano L, Azeredo HMC de, Bogusz Junior S, Ferreira MD, Bastos DHM, Alencar SM, Regitano-d’Arce MAB. Chemical composition and antifungal activity of essential oils and their combinations against Botrytis cinerea in strawberries [Internet]. Journal of Food Measurement and Characterization. 2021 ;15 1815-1825.Available from: https://doi.org/10.1007/s11694-020-00765-x

    Referências citadas na obra
    M.T. Ariza, P. Reboredo-Rodríguez, L. Mazzoni, T.Y. Forbes-Hernández, F. Giampieri, S. Afrin, M. Gasparrini, C. Soria, E. Martínez-Ferri, M. Battino, B. Mezzetti, Strawberry achenes are an important source of bioactive compounds for human health. Int. J. Mol. Sci. 17, 1–14 (2016). https://doi.org/10.3390/ijms17071103
    R. Dhital, P. Joshi, N. Becerra-Mora, A. Umagiliyage, T. Chai, P. Kohli, R. Choudhary, Integrity of edible nano-coatings and its effects on quality of strawberries subjected to simulated in-transit vibrations. LWT Food. Sci. Technol. 80, 257–264 (2017). https://doi.org/10.1016/j.lwt.2017.02.033
    S. Petrasch, S.J. Knapp, J.A.L. van Kan, B. Blanco-Ulate, Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Mol. Plant. Pathol. 20, 877–892 (2019). https://doi.org/10.1111/mpp.12794
    R. Dean, J.A. Van Kan, Z.A. Pretorius, K.E. Hammond-Kosack, A. Di Pietro, P.D. Spanu, J.J. Rudd, M. Dickman, K. Kahmann, J. Ellis, G.D. Foster, The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13, 414–430 (2012). https://doi.org/10.1111/j.1364-3703.2011.00783.x
    M. Leroch, M. Kretschmer, M. Hahn, Fungicide resistance phenotypes of botrytis cinerea isolates from commercial vineyards in South West Germany. J. Phytopathol. 159, 63–65 (2011). https://doi.org/10.1111/j.1439-0434.2010.01719.x
    L. Palou, A. Ali, E. Fallik, G. Romanazzi, GRAS, plant- and animal-derived compounds as alternatives to conventional fungicides for the control of postharvest diseases of fresh horticultural produce. Postharvest Biol. Technol. 122, 41–52 (2016). https://doi.org/10.1016/j.postharvbio.2016.04.017
    C. Pedrotti, R.T. da Silva Ribeiro, J. Schwambach, Control of postharvest fungal rots in grapes through the use of Baccharis trimera and Baccharis dracunculifolia essential oils. Crop Prot. 125, 1–7 (2019). https://doi.org/10.1016/j.cropro.2019.104912
    J. Oliveira, E.M. Gloria, M.C.M. Parisi, J.S. Baggio, P.P.M. Silva, C.M.S. Ambrosio, M. Spoto, H. F. Antifungal activity of essential oils associated with carboxymethylcellulose against Colletotrichum acutatum in strawberries. Sci. Hortic. (Amsterdam) 243, 261–267 (2019). https://doi.org/10.1016/j.scienta.2018.08.032
    E.Z. Tomazoni, G.F. Pauletti, R.T. da Silvaibeiro, S. Moura, J. Schwambach, In vitro and in vivo activity of essential oils extracted from Eucalyptus staigeriana, Eucalyptus globulus and Cinnamomum camphora against Alternaria solani Sorauer causing early blight in tomato. Sci. Hortic. (Amsterdam) 223, 72–77 (2017). https://doi.org/10.1016/j.scienta.2017.04.033
    K. Fisher, C. Phillips, Potential antimicrobial uses of essential oils in food: is citrus the answer? Trends Food Sci. Technol. 19, 156–164 (2008). https://doi.org/10.1016/j.tifs.2007.11.006
    L. Salvia-Trujillo, A. Rojas-Graü, R. Soliva-Fortuny, O. Martín-Belloso, Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils. Food Hydrocoll. 43, 547–556 (2015). https://doi.org/10.1016/j.foodhyd.2014.07.012
    S. Burt, Essential oils: their antibacterial properties and potential applications in foods - a review. Int. J. Food Microbiol. 94, 223–253 (2004). https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
    L.S. Nerio, J. Olivero-Verbel, E. Stashenko, Repellent activity of essential oils: a review. Bioresour. Technol. 101, 372–378 (2010). https://doi.org/10.1016/j.biortech.2009.07.048
    A.E. Aguilar-González, E. Palou, A. López-Malo, Antifungal activity of essential oils of clove (Syzygium aromaticum) and/or mustard (Brassica nigra) in vapor phase against gray mold (Botrytis cinerea) in strawberries. Innov. Food Sci. Emerg. Technol. 32, 181–185 (2015). https://doi.org/10.1016/j.ifset.2015.09.003
    F. Hossain, P. Follett, K.D. Vu, M. Harich, S. Salmieri, M. Lacroix, Evidence for synergistic activity of plant-derived essential oils against fungal pathogens of food. Food Microbiol. 53, 24–30 (2016). https://doi.org/10.1016/j.fm.2015.08.006
    S. Hosseini, J. Amini, M.K. Saba, K. Karimi, I. Pertot, Preharvest and postharvest application of garlic and rosemary essential oils for controlling anthracnose and quality assessment of strawberry fruit during cold storage. Front. Microbiol. 11, 1855 (2020). https://doi.org/10.3389/fmicb.2020.01855
    P. Plaza, R. Torres, J. Usall, N. Lamarca, I. Vinas, Evaluation of the potential of commercial post-harvest application of essential oils to control citrus decay. J. Hortic. Sci. Biotechnol. 79, 935–940 (2004). https://doi.org/10.1080/14620316.2004.11511869
    J. Yun, X. Fan, X. Li, Inactivation of salmonella enterica serovar typhimurium and quality maintenance of cherry tomatoes treated with gaseous essential oils. J. Food Sci. 78, 1–7 (2013). https://doi.org/10.1111/1750-3841.12052
    R.B. Pimentel, D.P. Souza, P.M. Albuquerque, A.V. Fernandes, A.S. Santos, S. Duvoisin Jr., J.F. Gonçalves, Variability and antifungal activity of volatile compounds from Aniba rosaeodora Ducke, harvested from Central Amazonia in two different seasons. Ind. Crops Prod. 123, 1–9 (2018). https://doi.org/10.1016/j.indcrop.2018.06.055
    W.F. Broekaert, F.G. Terras, B.P.A. Cammue, J. Vanderleyden, An automated quantitative assay for fungal growth inhibition. FEMS Microbiol. Lett. 69, 55–59 (1990). https://doi.org/10.1016/0378-1097(90)90412-J
    A. Ali, T. Wee Pheng, M.A. Mustafa, Application of lemongrass oil in vapour phase for the effective control of anthracnose of “Sekaki” papaya. J. Appl. Microbiol. 118, 1456–1464 (2015). https://doi.org/10.1111/jam.12782
    P. Cia, E.A. Benato, S.F. Pascholati, E.O. Garcia, Quitosana no controle pós-colheita da podridão mole em caqui&nbsp;“Rama Forte.” Bragantia 69, 745–752 (2010). https://doi.org/10.1590/s0006-87052010000300028
    E.C. Chagas, C. Majolo, P.C. Monteiro, M.R.D. Oliveira, P.E. Gama, H.R. Bizzo, F. C. M. Chaves. Composition of essential oils of Mentha species and their antimicrobial activity against Aeromonas spp. J. Essent. Oil Res. 32, 209–215 (2020). https://doi.org/10.1080/10412905.2020.1741457
    I. Ben Haj Yahia, W. Bouslimi, C. Messaoud, R. Jaouadi, M. Boussaid, Y. Zaouali, Comparative evaluation of Tunisian Mentha L. species essential oils: selection of potential antioxidant and antimicrobial agents. J. Essent. Oil Res. 31, 184–195 (2019). https://doi.org/10.1080/10412905.2018.1550021
    B.R. Rajeswara Rao, D.K. Rajput, R.P. Patel, Essential oil profiles of different parts of palmarosa (cymbopogon martinii (roxb.) wats. var. motia burk.). J. Essent. Oil Res. 21, 519–521 (2009). https://doi.org/10.1080/10412905.2009.9700233
    P. Van Khiên, H.T. Chiên, N.X. Dung, A.X. Leclercq, P.A. Leclercq, Chemical segregation of progeny of camphor trees with high camphor c.q. linalool content. J. Essent. Oil Res. 10, 607–612 (1998). https://doi.org/10.1080/10412905.1998.9700987
    I. Jantan, Y.E. Ling, S. Romli, N. Ayop, A.S.A. Ahmad, A comparative study of the constituents of the essential oils of three cinnamomum species from malaysia. J. Essent. Oil Res. 15, 387–391 (2003). https://doi.org/10.1080/10412905.2003.9698618
    F. Brahmi, A. Adjaoud, B. Marongiu, D. Falconieri, D. Yalaoui-Guellal, K. Madani, M. Chibane, Chemical and biological profiles of essential oils from Mentha spicata L. leaf from Bejaia in Algeria. J. Essent. Oil Res. 28, 211–220 (2016). https://doi.org/10.1080/10412905.2015.1118411
    A.I. Hussain, F. Anwar, M. Shahid, M. Ashraf, R. Przybylski, Chemicalcomposition, and antioxidant and antimicrobial activities of essential oil ofspearmint (Mentha spicata L.) from Pakistan. J. Essent. Oil Res. 22, 78–84 (2010). https://doi.org/10.1080/10412905.2010.9700269
    M.D. Soković, J. Vukojević, P.D. Marin, D.D. Brkić, V. Vajs, L.J. Van Griensven, Chemical composition of essential oils of Thymus and mentha species and their antifungal activities. Molecules 14, 238–249 (2009). https://doi.org/10.3390/molecules14010238
    R.M. Abd El-Baky, Z.S. Hashem, Eugenol and linalool: comparison of their antibacterial and antifungal activities. Afr. J. Microbiol. Res. 10, 1860–1872 (2016). https://doi.org/10.5897/AJMR2016.8283
    E. Simionatto, C. Porto, C.Z. Stüker, I.I. Dalcol, U.F.D. Silva, Chemical composition and antimicrobial activity of the essential oil from Aeolanthus suaveolens Mart. ex Spreng. Quim. Nova 30, 1923–1925 (2007). https://doi.org/10.1590/S0100-40422007000800024
    I.H.N. Bassolé, H.R. Juliani, Essential oils in combination and their antimicrobial properties. Molecules 17, 3989–4006 (2012). https://doi.org/10.3390/molecules17043989
    R. Tserennadmid, M. Takó, L. Galgóczy, T. Papp, C. Vágvölgyi, L. Gerő, J. Krisch, Antibacterial effect of essential oils and interaction with food components. Cent. Eur. J. Biol. 5, 641–648 (2010). https://doi.org/10.2478/s11535-010-0058-5
    M. Hyldgaard, T. Mygind, R.L. Meyer, Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 3, 1–24 (2012). https://doi.org/10.3389/fmicb.2012.00012
    E.R. Lorenzetti, F.P. Monteiro, P.E. Souza, R.J. Souza, H.K. Scalice, R. Diogo Jr., S.O. Pires, Bioatividade de óleos essenciais no controle de Botrytis cinerea isolado de morangueiro. Rev. Bras. Plantas Med. 19, 619–627 (2011). https://doi.org/10.1590/s1516-05722011000500019
    R.O. Fialho, F.S. Papa, D.A. Pereira, Efeito fungitóxico de óleos essenciais sobre Phakopsora euvitis, agente causal da ferrugem da videira. Arq. Inst. Biol. 82, 1–7 (2015). https://doi.org/10.1590/1808-1657000702013
    S. Pattnaik, V.R. Subramanyam, Antibacterial and antifungal activity of ten essential oils in vitro. Microbios 86, 237–246 (1996)
    A.C. da Rocha Neto, B.B. Navarro, L. Canton, M. Maraschin, R.M. Di Piero, Antifungal activity of palmarosa (Cymbopogon martinii), tea tree (Melaleuca alternifolia) and star anise (Illicium verum) essential oils against Penicillium expansum and their mechanisms of action. LWT 105, 385–392 (2019). https://doi.org/10.1016/j.lwt.2019.02.060
    V.S. Pragadheesh, A. Saroj, A. Yadav, C.S. Chanotiya, M. Alam, A. Samad, Chemical characterization and antifungal activity of cinnamomum camphora essential oil. Ind. Crops Prod. 49, 628–633 (2013). https://doi.org/10.1016/j.indcrop.2013.06.023
    H.M.A. Cavanagh, Antifungal activity of the volatile phase of essential oils: a brief review. Nat. Prod. Commun. 2, 1297–1302 (2007). https://doi.org/10.1177/1934578x0700201222

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021