Improving ultimate convergence of an augmented Lagrangian method (2008)
- Authors:
- Autor USP: BIRGIN, ERNESTO JULIAN GOLDBERG - IME
- Unidade: IME
- DOI: 10.1080/10556780701577730
- Assunto: PROGRAMAÇÃO NÃO LINEAR
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Optimization Methods and Software
- ISSN: 1055-6788
- Volume/Número/Paginação/Ano: v. 23, n. 2, p. 177-195, 2008
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Improving ultimate convergence of an augmented Lagrangian method. Optimization Methods and Software, v. 23, n. 2, p. 177-195, 2008Tradução . . Disponível em: https://doi.org/10.1080/10556780701577730. Acesso em: 12 jan. 2026. -
APA
Birgin, E. J. G., & Martínez, J. M. (2008). Improving ultimate convergence of an augmented Lagrangian method. Optimization Methods and Software, 23( 2), 177-195. doi:10.1080/10556780701577730 -
NLM
Birgin EJG, Martínez JM. Improving ultimate convergence of an augmented Lagrangian method [Internet]. Optimization Methods and Software. 2008 ; 23( 2): 177-195.[citado 2026 jan. 12 ] Available from: https://doi.org/10.1080/10556780701577730 -
Vancouver
Birgin EJG, Martínez JM. Improving ultimate convergence of an augmented Lagrangian method [Internet]. Optimization Methods and Software. 2008 ; 23( 2): 177-195.[citado 2026 jan. 12 ] Available from: https://doi.org/10.1080/10556780701577730 - Assessing the reliability of general-purpose Inexact Restoration methods
- Foreword special issue dedicated to selected surveys in nonlinear programming. [Apresentação]
- Spectral projected gradient methods: review and perspectives
- Optimality properties of an Augmented Lagrangian method on infeasible problems
- Sequential equality-constrained optimization for nonlinear programming
- Augmented Lagrangians with possible infeasibility and finite termination for global nonlinear programming
- On the application of an augmented Lagrangian algorithm to some portfolio problems
- Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization
- Global minimization using an Augmented Lagrangian method with variable lower-level constraints
- Evaluating bound-constrained minimization software
Informações sobre o DOI: 10.1080/10556780701577730 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
