Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization (2008)
- Authors:
- Autor USP: BIRGIN, ERNESTO JULIAN GOLDBERG - IME
- Unidade: IME
- DOI: 10.1007/s10589-007-9050-z
- Assunto: PROGRAMAÇÃO NÃO LINEAR
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Computational Optimization and Applications
- ISSN: 0926-6003
- Volume/Número/Paginação/Ano: v. 39, n. 1, p. 1-16, 2008
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization. Computational Optimization and Applications, v. 39, n. 1, p. 1-16, 2008Tradução . . Disponível em: https://doi.org/10.1007/s10589-007-9050-z. Acesso em: 29 dez. 2025. -
APA
Birgin, E. J. G., & Martínez, J. M. (2008). Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization. Computational Optimization and Applications, 39( 1), 1-16. doi:10.1007/s10589-007-9050-z -
NLM
Birgin EJG, Martínez JM. Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization [Internet]. Computational Optimization and Applications. 2008 ; 39( 1): 1-16.[citado 2025 dez. 29 ] Available from: https://doi.org/10.1007/s10589-007-9050-z -
Vancouver
Birgin EJG, Martínez JM. Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization [Internet]. Computational Optimization and Applications. 2008 ; 39( 1): 1-16.[citado 2025 dez. 29 ] Available from: https://doi.org/10.1007/s10589-007-9050-z - Special issue on nonlinear programming dedicated to the ALIO-INFORMS Joint International Meeting 2010. [Prefácio]
- Low order-value approach for solving VaR-constrained optimization problems
- Large-scale active-set box-constrained optimization method with spectral projected gradients
- A box-constrained optimization algorithm with negative curvature directions and spectral projected gradients
- Spectral projected gradient methods: review and perspectives
- Augmented Lagrangians with possible infeasibility and finite termination for global nonlinear programming
- Foreword special issue dedicated to selected surveys in nonlinear programming. [Apresentação]
- Assessing the reliability of general-purpose Inexact Restoration methods
- Packing circles within ellipses
- Sparse Projected-Gradient Method As a Linear-Scaling Low-Memory Alternative to Diagonalization in Self-Consistent Field Electronic Structure Calculations
Informações sobre o DOI: 10.1007/s10589-007-9050-z (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
