Assessing the reliability of general-purpose Inexact Restoration methods (2015)
- Authors:
- Autor USP: BIRGIN, ERNESTO JULIAN GOLDBERG - IME
- Unidade: IME
- DOI: 10.1016/j.cam.2014.12.031
- Assunto: PROGRAMAÇÃO NÃO LINEAR
- Language: Inglês
- Imprenta:
- Source:
- Título do periódico: Journal of Computational and Applied Mathematics
- ISSN: 0377-0427
- Volume/Número/Paginação/Ano: v. 282, p. 1-16, 2015
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: bronze
-
ABNT
BIRGIN, Ernesto Julian Goldberg; BUENO, Luis Felipe; MARTÍNEZ, José Mario. Assessing the reliability of general-purpose Inexact Restoration methods. Journal of Computational and Applied Mathematics, Amsterdam, v. 282, p. 1-16, 2015. Disponível em: < http://dx.doi.org/10.1016/j.cam.2014.12.031 > DOI: 10.1016/j.cam.2014.12.031. -
APA
Birgin, E. J. G., Bueno, L. F., & Martínez, J. M. (2015). Assessing the reliability of general-purpose Inexact Restoration methods. Journal of Computational and Applied Mathematics, 282, 1-16. doi:10.1016/j.cam.2014.12.031 -
NLM
Birgin EJG, Bueno LF, Martínez JM. Assessing the reliability of general-purpose Inexact Restoration methods [Internet]. Journal of Computational and Applied Mathematics. 2015 ; 282 1-16.Available from: http://dx.doi.org/10.1016/j.cam.2014.12.031 -
Vancouver
Birgin EJG, Bueno LF, Martínez JM. Assessing the reliability of general-purpose Inexact Restoration methods [Internet]. Journal of Computational and Applied Mathematics. 2015 ; 282 1-16.Available from: http://dx.doi.org/10.1016/j.cam.2014.12.031 - Augmented Lagrangians with possible infeasibility and finite termination for global nonlinear programming
- Spectral projected gradient methods: review and perspectives
- Foreword special issue dedicated to selected surveys in nonlinear programming. [Apresentação]
- Preface: Special issue on nonlinear programming dedicated to the ALIO-INFORMS Joint International Meeting 2010
- On acceleration schemes and the choice of subproblem’s constraints in augmented Lagrangian methods
- Low order-value approach for solving VaR-constrained optimization problems
- Low order-value approach for solving VaR-constrained optimization problems
- Sparse Projected-Gradient Method As a Linear-Scaling Low-Memory Alternative to Diagonalization in Self-Consistent Field Electronic Structure Calculations
- A box-constrained optimization algorithm with negative curvature directions and spectral projected gradients
- Packing circles within ellipses
Informações sobre o DOI: 10.1016/j.cam.2014.12.031 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas