Optimality properties of an Augmented Lagrangian method on infeasible problems (2015)
- Authors:
- Autor USP: BIRGIN, ERNESTO JULIAN GOLDBERG - IME
- Unidade: IME
- DOI: 10.1007/s10589-014-9685-5
- Subjects: PROGRAMAÇÃO NÃO LINEAR; ALGORITMOS; PROGRAMAÇÃO MATEMÁTICA; CIÊNCIA DA COMPUTAÇÃO
- Language: Inglês
- Imprenta:
- Source:
- Título: Computational Optimization and Applications
- ISSN: 1573-2894
- Volume/Número/Paginação/Ano: v. 60, n. 3, p. 609-631, 2015
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BIRGIN, Ernesto Julian Goldberg e MARTINEZ, José Mario e PRUDENTE, Leandro da Fonseca. Optimality properties of an Augmented Lagrangian method on infeasible problems. Computational Optimization and Applications, v. 60, n. 3, p. 609-631, 2015Tradução . . Disponível em: https://doi.org/10.1007/s10589-014-9685-5. Acesso em: 19 fev. 2026. -
APA
Birgin, E. J. G., Martinez, J. M., & Prudente, L. da F. (2015). Optimality properties of an Augmented Lagrangian method on infeasible problems. Computational Optimization and Applications, 60( 3), 609-631. doi:10.1007/s10589-014-9685-5 -
NLM
Birgin EJG, Martinez JM, Prudente L da F. Optimality properties of an Augmented Lagrangian method on infeasible problems [Internet]. Computational Optimization and Applications. 2015 ; 60( 3): 609-631.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1007/s10589-014-9685-5 -
Vancouver
Birgin EJG, Martinez JM, Prudente L da F. Optimality properties of an Augmented Lagrangian method on infeasible problems [Internet]. Computational Optimization and Applications. 2015 ; 60( 3): 609-631.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1007/s10589-014-9685-5 - An augmented Lagrangian method with finite termination
- Packing circles within ellipses
- Spectral projected gradient and variable metric methods for optimization with linear inequalities
- Sparse Projected-Gradient Method As a Linear-Scaling Low-Memory Alternative to Diagonalization in Self-Consistent Field Electronic Structure Calculations
- The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems
- On acceleration schemes and the choice of subproblem’s constraints in augmented Lagrangian methods
- Penalizing simple constraints on augmented Lagrangian methods
- Dykstra’s algorithm and robust stopping criteria
- Outer trust-region method for constrained optimization
- On the application of an augmented Lagrangian algorithm to some portfolio problems
Informações sobre o DOI: 10.1007/s10589-014-9685-5 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
