Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization (2012)
- Authors:
- Autor USP: BIRGIN, ERNESTO JULIAN GOLDBERG - IME
- Unidade: IME
- DOI: 10.1007/s10589-011-9396-0
- Assunto: PROGRAMAÇÃO NÃO LINEAR
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Computational Optimization and Applications
- ISSN: 0926-6003
- Volume/Número/Paginação/Ano: v. 51, n. 3, p. 941-965, 2012
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BIRGIN, Ernesto Julian Goldberg e MARTINEZ, J. M. Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization. Computational Optimization and Applications, v. 51, n. 3, p. 941-965, 2012Tradução . . Disponível em: https://doi.org/10.1007/s10589-011-9396-0. Acesso em: 19 fev. 2026. -
APA
Birgin, E. J. G., & Martinez, J. M. (2012). Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization. Computational Optimization and Applications, 51( 3), 941-965. doi:10.1007/s10589-011-9396-0 -
NLM
Birgin EJG, Martinez JM. Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization [Internet]. Computational Optimization and Applications. 2012 ; 51( 3): 941-965.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1007/s10589-011-9396-0 -
Vancouver
Birgin EJG, Martinez JM. Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization [Internet]. Computational Optimization and Applications. 2012 ; 51( 3): 941-965.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1007/s10589-011-9396-0 - An augmented Lagrangian method with finite termination
- Packing circles within ellipses
- Spectral projected gradient and variable metric methods for optimization with linear inequalities
- Sparse Projected-Gradient Method As a Linear-Scaling Low-Memory Alternative to Diagonalization in Self-Consistent Field Electronic Structure Calculations
- The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems
- On acceleration schemes and the choice of subproblem’s constraints in augmented Lagrangian methods
- Penalizing simple constraints on augmented Lagrangian methods
- Dykstra’s algorithm and robust stopping criteria
- Outer trust-region method for constrained optimization
- On the application of an augmented Lagrangian algorithm to some portfolio problems
Informações sobre o DOI: 10.1007/s10589-011-9396-0 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
