Globally convergent inexact quasi-Newton methods for solving nonlinear systems (2003)
- Authors:
- Autor USP: BIRGIN, ERNESTO JULIAN GOLDBERG - IME
- Unidade: IME
- DOI: 10.1023%2FA%3A1024013824524
- Assunto: ANÁLISE NUMÉRICA
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Numerical Algorithms
- ISSN: 1017-1398
- Volume/Número/Paginação/Ano: v. 32, n. 2-4, p. 249-260, 2003
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BIRGIN, Ernesto Julian Goldberg e KREJIC, Natavsa e MARTÍNEZ, José Mário. Globally convergent inexact quasi-Newton methods for solving nonlinear systems. Numerical Algorithms, v. 32, n. 2-4, p. 249-260, 2003Tradução . . Disponível em: https://doi.org/10.1023%2FA%3A1024013824524. Acesso em: 12 fev. 2026. -
APA
Birgin, E. J. G., Krejic, N., & Martínez, J. M. (2003). Globally convergent inexact quasi-Newton methods for solving nonlinear systems. Numerical Algorithms, 32( 2-4), 249-260. doi:10.1023%2FA%3A1024013824524 -
NLM
Birgin EJG, Krejic N, Martínez JM. Globally convergent inexact quasi-Newton methods for solving nonlinear systems [Internet]. Numerical Algorithms. 2003 ; 32( 2-4): 249-260.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1023%2FA%3A1024013824524 -
Vancouver
Birgin EJG, Krejic N, Martínez JM. Globally convergent inexact quasi-Newton methods for solving nonlinear systems [Internet]. Numerical Algorithms. 2003 ; 32( 2-4): 249-260.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1023%2FA%3A1024013824524 - An augmented Lagrangian method with finite termination
- Packing circles within ellipses
- Spectral projected gradient and variable metric methods for optimization with linear inequalities
- Sparse Projected-Gradient Method As a Linear-Scaling Low-Memory Alternative to Diagonalization in Self-Consistent Field Electronic Structure Calculations
- The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems
- On acceleration schemes and the choice of subproblem’s constraints in augmented Lagrangian methods
- Penalizing simple constraints on augmented Lagrangian methods
- Dykstra’s algorithm and robust stopping criteria
- Outer trust-region method for constrained optimization
- On the application of an augmented Lagrangian algorithm to some portfolio problems
Informações sobre o DOI: 10.1023%2FA%3A1024013824524 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
