Globally convergent inexact quasi-Newton methods for solving nonlinear systems (2003)
- Authors:
- Autor USP: BIRGIN, ERNESTO JULIAN GOLDBERG - IME
- Unidade: IME
- DOI: 10.1023%2FA%3A1024013824524
- Assunto: ANÁLISE NUMÉRICA
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Numerical Algorithms
- ISSN: 1017-1398
- Volume/Número/Paginação/Ano: v. 32, n. 2-4, p. 249-260, 2003
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
BIRGIN, Ernesto Julian Goldberg e KREJIC, Natavsa e MARTÍNEZ, José Mário. Globally convergent inexact quasi-Newton methods for solving nonlinear systems. Numerical Algorithms, v. 32, n. 2-4, p. 249-260, 2003Tradução . . Disponível em: https://doi.org/10.1023%2FA%3A1024013824524. Acesso em: 27 dez. 2025. -
APA
Birgin, E. J. G., Krejic, N., & Martínez, J. M. (2003). Globally convergent inexact quasi-Newton methods for solving nonlinear systems. Numerical Algorithms, 32( 2-4), 249-260. doi:10.1023%2FA%3A1024013824524 -
NLM
Birgin EJG, Krejic N, Martínez JM. Globally convergent inexact quasi-Newton methods for solving nonlinear systems [Internet]. Numerical Algorithms. 2003 ; 32( 2-4): 249-260.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1023%2FA%3A1024013824524 -
Vancouver
Birgin EJG, Krejic N, Martínez JM. Globally convergent inexact quasi-Newton methods for solving nonlinear systems [Internet]. Numerical Algorithms. 2003 ; 32( 2-4): 249-260.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1023%2FA%3A1024013824524 - Augmented Lagrangian methods under the constant positive linear dependence constraint qualification
- Augmented Lagrangian methods under the constant positive linear dependence constraint qualification
- Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization
- Evaluating bound-constrained minimization software
- Sequential equality-constrained optimization for nonlinear programming
- Optimality properties of an Augmented Lagrangian method on infeasible problems
- On the application of an augmented Lagrangian algorithm to some portfolio problems
- Two-stage two-dimensional guillotine cutting stock problems with usable leftover
- Practical augmented Lagrangian methods for constrained optimization
- Iteration and evaluation complexity for the minimization of functions whose computation is intrinsically inexact
Informações sobre o DOI: 10.1023%2FA%3A1024013824524 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
