Augmented Lagrangians with possible infeasibility and finite termination for global nonlinear programming (2014)
- Authors:
- Autor USP: BIRGIN, ERNESTO JULIAN GOLDBERG - IME
- Unidade: IME
- DOI: 10.1007/s10898-013-0039-0
- Subjects: PROGRAMAÇÃO MATEMÁTICA; PROGRAMAÇÃO NÃO LINEAR
- Language: Inglês
- Imprenta:
- Source:
- Título do periódico: Journal of Global Optimization
- ISSN: 0925-5001
- Volume/Número/Paginação/Ano: v. 58, n. 2, p. 207-242, 2014
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
BIRGIN, Ernesto Julian Goldberg e MARTINEZ, José Mario e PRUDENTE, Leandro da Fonseca. Augmented Lagrangians with possible infeasibility and finite termination for global nonlinear programming. Journal of Global Optimization, v. 58, n. 2, p. 207-242, 2014Tradução . . Disponível em: https://doi.org/10.1007/s10898-013-0039-0. Acesso em: 10 dez. 2023. -
APA
Birgin, E. J. G., Martinez, J. M., & Prudente, L. da F. (2014). Augmented Lagrangians with possible infeasibility and finite termination for global nonlinear programming. Journal of Global Optimization, 58( 2), 207-242. doi:10.1007/s10898-013-0039-0 -
NLM
Birgin EJG, Martinez JM, Prudente L da F. Augmented Lagrangians with possible infeasibility and finite termination for global nonlinear programming [Internet]. Journal of Global Optimization. 2014 ; 58( 2): 207-242.[citado 2023 dez. 10 ] Available from: https://doi.org/10.1007/s10898-013-0039-0 -
Vancouver
Birgin EJG, Martinez JM, Prudente L da F. Augmented Lagrangians with possible infeasibility and finite termination for global nonlinear programming [Internet]. Journal of Global Optimization. 2014 ; 58( 2): 207-242.[citado 2023 dez. 10 ] Available from: https://doi.org/10.1007/s10898-013-0039-0 - Special issue on nonlinear programming dedicated to the ALIO-INFORMS Joint International Meeting 2010. [Prefácio]
- Low order-value approach for solving VaR-constrained optimization problems
- Large-scale active-set box-constrained optimization method with spectral projected gradients
- A box-constrained optimization algorithm with negative curvature directions and spectral projected gradients
- Spectral projected gradient methods: review and perspectives
- Foreword special issue dedicated to selected surveys in nonlinear programming. [Apresentação]
- Assessing the reliability of general-purpose Inexact Restoration methods
- Packing circles within ellipses
- Sparse Projected-Gradient Method As a Linear-Scaling Low-Memory Alternative to Diagonalization in Self-Consistent Field Electronic Structure Calculations
- On acceleration schemes and the choice of subproblem’s constraints in augmented Lagrangian methods
Informações sobre o DOI: 10.1007/s10898-013-0039-0 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas