Filtros : "MONARD, MARIA CAROLINA" "Inglês" Removido: "APRENDIZADO COMPUTACIONAL" Limpar

Filtros



Refine with date range


  • Source: Information Sciences. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, FUZZY (INTELIGÊNCIA ARTIFICIAL)

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CINTRA, M. E e CAMARGO, H. A e MONARD, Maria Carolina. Genetic generation of fuzzy systems with rule extraction using formal concept analysis. Information Sciences, v. 349-350, p. 199-215, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.ins.2016.02.026. Acesso em: 28 nov. 2025.
    • APA

      Cintra, M. E., Camargo, H. A., & Monard, M. C. (2016). Genetic generation of fuzzy systems with rule extraction using formal concept analysis. Information Sciences, 349-350, 199-215. doi:10.1016/j.ins.2016.02.026
    • NLM

      Cintra ME, Camargo HA, Monard MC. Genetic generation of fuzzy systems with rule extraction using formal concept analysis [Internet]. Information Sciences. 2016 ; 349-350 199-215.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.ins.2016.02.026
    • Vancouver

      Cintra ME, Camargo HA, Monard MC. Genetic generation of fuzzy systems with rule extraction using formal concept analysis [Internet]. Information Sciences. 2016 ; 349-350 199-215.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.ins.2016.02.026
  • Source: Proceedings. Conference titles: IEEE International Conference on Fuzzy Systems - FUZZ-IEEE. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, FUZZY (INTELIGÊNCIA ARTIFICIAL)

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CINTRA, Marcos E e MONARD, Maria Carolina e CAMARGO, Heloisa A. FCA-Based Rule Generator: a framework for the genetic generation of fuzzy classification systems using formal concept analysis. 2015, Anais.. Piscataway: IEEE, 2015. Disponível em: https://doi.org/10.1109/FUZZ-IEEE.2015.7337950. Acesso em: 28 nov. 2025.
    • APA

      Cintra, M. E., Monard, M. C., & Camargo, H. A. (2015). FCA-Based Rule Generator: a framework for the genetic generation of fuzzy classification systems using formal concept analysis. In Proceedings. Piscataway: IEEE. doi:10.1109/FUZZ-IEEE.2015.7337950
    • NLM

      Cintra ME, Monard MC, Camargo HA. FCA-Based Rule Generator: a framework for the genetic generation of fuzzy classification systems using formal concept analysis [Internet]. Proceedings. 2015 ;[citado 2025 nov. 28 ] Available from: https://doi.org/10.1109/FUZZ-IEEE.2015.7337950
    • Vancouver

      Cintra ME, Monard MC, Camargo HA. FCA-Based Rule Generator: a framework for the genetic generation of fuzzy classification systems using formal concept analysis [Internet]. Proceedings. 2015 ;[citado 2025 nov. 28 ] Available from: https://doi.org/10.1109/FUZZ-IEEE.2015.7337950
  • Source: Neurocomputing. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRAGA, Igor e MONARD, Maria Carolina. Improving the kernel regularized least squares method for small-sample regression. Neurocomputing, v. 163, p. 106-114, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2014.12.097. Acesso em: 28 nov. 2025.
    • APA

      Braga, I., & Monard, M. C. (2015). Improving the kernel regularized least squares method for small-sample regression. Neurocomputing, 163, 106-114. doi:10.1016/j.neucom.2014.12.097
    • NLM

      Braga I, Monard MC. Improving the kernel regularized least squares method for small-sample regression [Internet]. Neurocomputing. 2015 ; 163 106-114.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.neucom.2014.12.097
    • Vancouver

      Braga I, Monard MC. Improving the kernel regularized least squares method for small-sample regression [Internet]. Neurocomputing. 2015 ; 163 106-114.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.neucom.2014.12.097
  • Source: Electronic Notes in Theoretical Computer Science. Conference titles: Latin American Computing Conference - CLEI. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMÁS, Jimena Torres et al. A framework to generate synthetic multi-label datasets. Electronic Notes in Theoretical Computer Science. Amsterdam: Elsevier. Disponível em: https://doi.org/10.1016/j.entcs.2014.01.025. Acesso em: 28 nov. 2025. , 2014
    • APA

      Tomás, J. T., Spolaôr, N., Cherman, E. A., & Monard, M. C. (2014). A framework to generate synthetic multi-label datasets. Electronic Notes in Theoretical Computer Science. Amsterdam: Elsevier. doi:10.1016/j.entcs.2014.01.025
    • NLM

      Tomás JT, Spolaôr N, Cherman EA, Monard MC. A framework to generate synthetic multi-label datasets [Internet]. Electronic Notes in Theoretical Computer Science. 2014 ; fe 2014 155-176.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.entcs.2014.01.025
    • Vancouver

      Tomás JT, Spolaôr N, Cherman EA, Monard MC. A framework to generate synthetic multi-label datasets [Internet]. Electronic Notes in Theoretical Computer Science. 2014 ; fe 2014 155-176.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.entcs.2014.01.025
  • Source: Proceedings. Conference titles: Brazilian Conference on Intelligent Systems - BRACIS. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SPOLAÔR, Newton et al. ReliefF for multi-label feature selection. 2013, Anais.. Los Alamitos: Conference Publishing Services, 2013. Disponível em: https://doi.org/10.1109/BRACIS.2013.10. Acesso em: 28 nov. 2025.
    • APA

      Spolaôr, N., Cherman, E. A., Monard, M. C., & Lee, H. D. (2013). ReliefF for multi-label feature selection. In Proceedings. Los Alamitos: Conference Publishing Services. doi:10.1109/BRACIS.2013.10
    • NLM

      Spolaôr N, Cherman EA, Monard MC, Lee HD. ReliefF for multi-label feature selection [Internet]. Proceedings. 2013 ;[citado 2025 nov. 28 ] Available from: https://doi.org/10.1109/BRACIS.2013.10
    • Vancouver

      Spolaôr N, Cherman EA, Monard MC, Lee HD. ReliefF for multi-label feature selection [Internet]. Proceedings. 2013 ;[citado 2025 nov. 28 ] Available from: https://doi.org/10.1109/BRACIS.2013.10
  • Source: Lecture Notes in Artificial Intelligence. Conference titles: Mexican International Conference on Artificial Intelligence : Advances in Soft Computing and its Applications - MICAI. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRAGA, Igor et al. A note on parameter selection for support vector machines. Lecture Notes in Artificial Intelligence. Berlin: Springer-Verlag. Disponível em: https://doi.org/10.1007/978-3-642-45111-9_21. Acesso em: 28 nov. 2025. , 2013
    • APA

      Braga, I., Carmo, L. P. do, Benatti, C. C., & Monard, M. C. (2013). A note on parameter selection for support vector machines. Lecture Notes in Artificial Intelligence. Berlin: Springer-Verlag. doi:10.1007/978-3-642-45111-9_21
    • NLM

      Braga I, Carmo LP do, Benatti CC, Monard MC. A note on parameter selection for support vector machines [Internet]. Lecture Notes in Artificial Intelligence. 2013 ; 8266 233-244.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/978-3-642-45111-9_21
    • Vancouver

      Braga I, Carmo LP do, Benatti CC, Monard MC. A note on parameter selection for support vector machines [Internet]. Lecture Notes in Artificial Intelligence. 2013 ; 8266 233-244.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/978-3-642-45111-9_21
  • Source: Proceedings. Conference titles: Brazilian Conference on Intelligent Systems - BRACIS. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRAGA, Igor e MONARD, Maria Carolina. Statistical and heuristic model selection in regularized least-squares. 2013, Anais.. Los Alamitos: Conference Publishing Services, 2013. Disponível em: https://doi.org/10.1109/BRACIS.2013.46. Acesso em: 28 nov. 2025.
    • APA

      Braga, I., & Monard, M. C. (2013). Statistical and heuristic model selection in regularized least-squares. In Proceedings. Los Alamitos: Conference Publishing Services. doi:10.1109/BRACIS.2013.46
    • NLM

      Braga I, Monard MC. Statistical and heuristic model selection in regularized least-squares [Internet]. Proceedings. 2013 ;[citado 2025 nov. 28 ] Available from: https://doi.org/10.1109/BRACIS.2013.46
    • Vancouver

      Braga I, Monard MC. Statistical and heuristic model selection in regularized least-squares [Internet]. Proceedings. 2013 ;[citado 2025 nov. 28 ] Available from: https://doi.org/10.1109/BRACIS.2013.46
  • Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CINTRA, Marcos E e MONARD, Maria Carolina e CAMARGO, Heloisa A. On rule learning methods: a comparative analysis of classic and fuzzy approaches. Tradução . Berlin: Springer-Verlag, 2013. . . Acesso em: 28 nov. 2025.
    • APA

      Cintra, M. E., Monard, M. C., & Camargo, H. A. (2013). On rule learning methods: a comparative analysis of classic and fuzzy approaches. In . Berlin: Springer-Verlag.
    • NLM

      Cintra ME, Monard MC, Camargo HA. On rule learning methods: a comparative analysis of classic and fuzzy approaches. Berlin: Springer-Verlag; 2013. [citado 2025 nov. 28 ]
    • Vancouver

      Cintra ME, Monard MC, Camargo HA. On rule learning methods: a comparative analysis of classic and fuzzy approaches. Berlin: Springer-Verlag; 2013. [citado 2025 nov. 28 ]
  • Source: Electronic Notes in Theoretical Computer Science. Conference titles: Latin American Conference in Informatics - CLEI. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SPOLAÔR, Newton et al. A comparison of multi-label feature selection methods using the problem transformation approach. Electronic Notes in Theoretical Computer Science. Amsterdam: Elsevier. Disponível em: https://doi.org/10.1016/j.entcs.2013.02.010. Acesso em: 28 nov. 2025. , 2013
    • APA

      Spolaôr, N., Cherman, E. A., Monard, M. C., & Lee, H. D. (2013). A comparison of multi-label feature selection methods using the problem transformation approach. Electronic Notes in Theoretical Computer Science. Amsterdam: Elsevier. doi:10.1016/j.entcs.2013.02.010
    • NLM

      Spolaôr N, Cherman EA, Monard MC, Lee HD. A comparison of multi-label feature selection methods using the problem transformation approach [Internet]. Electronic Notes in Theoretical Computer Science. 2013 ; 292( 5): 135-151.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.entcs.2013.02.010
    • Vancouver

      Spolaôr N, Cherman EA, Monard MC, Lee HD. A comparison of multi-label feature selection methods using the problem transformation approach [Internet]. Electronic Notes in Theoretical Computer Science. 2013 ; 292( 5): 135-151.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.entcs.2013.02.010
  • Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SPOLAÔR, Newton et al. A systematic review on experimental multi-label learning. . São Carlos: ICMC-USP. Disponível em: http://www2.icmc.usp.br/~biblio/BIBLIOTECA/rel_tec/RT_392.pdf. Acesso em: 28 nov. 2025. , 2013
    • APA

      Spolaôr, N., Cherman, E. A., Metz, J., & Monard, M. C. (2013). A systematic review on experimental multi-label learning. São Carlos: ICMC-USP. Recuperado de http://www2.icmc.usp.br/~biblio/BIBLIOTECA/rel_tec/RT_392.pdf
    • NLM

      Spolaôr N, Cherman EA, Metz J, Monard MC. A systematic review on experimental multi-label learning [Internet]. 2013 ;[citado 2025 nov. 28 ] Available from: http://www2.icmc.usp.br/~biblio/BIBLIOTECA/rel_tec/RT_392.pdf
    • Vancouver

      Spolaôr N, Cherman EA, Metz J, Monard MC. A systematic review on experimental multi-label learning [Internet]. 2013 ;[citado 2025 nov. 28 ] Available from: http://www2.icmc.usp.br/~biblio/BIBLIOTECA/rel_tec/RT_392.pdf
  • Source: Mathware & Soft Computing Magazine. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CINTRA, Marcos E e MONARD, Maria Carolina e CAMARGO, Heloisa A. A fuzzy decision tree algorithm based on C4.5. Mathware & Soft Computing Magazine, v. 20, n. ju 2013, p. 56-62, 2013Tradução . . Disponível em: http://www.eusflat.org/msc/index.php. Acesso em: 28 nov. 2025.
    • APA

      Cintra, M. E., Monard, M. C., & Camargo, H. A. (2013). A fuzzy decision tree algorithm based on C4.5. Mathware & Soft Computing Magazine, 20( ju 2013), 56-62. Recuperado de http://www.eusflat.org/msc/index.php
    • NLM

      Cintra ME, Monard MC, Camargo HA. A fuzzy decision tree algorithm based on C4.5 [Internet]. Mathware & Soft Computing Magazine. 2013 ; 20( ju 2013): 56-62.[citado 2025 nov. 28 ] Available from: http://www.eusflat.org/msc/index.php
    • Vancouver

      Cintra ME, Monard MC, Camargo HA. A fuzzy decision tree algorithm based on C4.5 [Internet]. Mathware & Soft Computing Magazine. 2013 ; 20( ju 2013): 56-62.[citado 2025 nov. 28 ] Available from: http://www.eusflat.org/msc/index.php
  • Source: Anais. Conference titles: Congresso Brasileiro de Sistemas Fuzzy : Recentes Avanços em Sistemas "Fuzzy" - CBSF. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CINTRA, Marcos E e MONARD, Maria Carolina e CAMARGO, Heloisa A. FuzzyDT: a fuzzy decision tree algorithm based on C4.5. 2012, Anais.. Natal: SBMAC, 2012. Disponível em: http://www.lbd.dcc.ufmg.br/colecoes/cbsf/2012/0016.pdf. Acesso em: 28 nov. 2025.
    • APA

      Cintra, M. E., Monard, M. C., & Camargo, H. A. (2012). FuzzyDT: a fuzzy decision tree algorithm based on C4.5. In Anais. Natal: SBMAC. Recuperado de http://www.lbd.dcc.ufmg.br/colecoes/cbsf/2012/0016.pdf
    • NLM

      Cintra ME, Monard MC, Camargo HA. FuzzyDT: a fuzzy decision tree algorithm based on C4.5 [Internet]. Anais. 2012 ;[citado 2025 nov. 28 ] Available from: http://www.lbd.dcc.ufmg.br/colecoes/cbsf/2012/0016.pdf
    • Vancouver

      Cintra ME, Monard MC, Camargo HA. FuzzyDT: a fuzzy decision tree algorithm based on C4.5 [Internet]. Anais. 2012 ;[citado 2025 nov. 28 ] Available from: http://www.lbd.dcc.ufmg.br/colecoes/cbsf/2012/0016.pdf
  • Source: Lecture Notes in Artifical Intelligence. Conference titles: Ibero-American Conference on Artificial Intelligence - IBERAMIA : Advances in Artificial Intelligence. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      METZ, Jean et al. On the estimation of predictive evaluation measure baselines for multi-label learning. Lecture Notes in Artifical Intelligence. Berlin: Springer-Verlag. Disponível em: https://doi.org/10.1007/978-3-642-34654-5_20. Acesso em: 28 nov. 2025. , 2012
    • APA

      Metz, J., Abreu, L. F. D. de, Cherman, E. A., & Monard, M. C. (2012). On the estimation of predictive evaluation measure baselines for multi-label learning. Lecture Notes in Artifical Intelligence. Berlin: Springer-Verlag. doi:10.1007/978-3-642-34654-5_20
    • NLM

      Metz J, Abreu LFD de, Cherman EA, Monard MC. On the estimation of predictive evaluation measure baselines for multi-label learning [Internet]. Lecture Notes in Artifical Intelligence. 2012 ; 7637 189-198.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/978-3-642-34654-5_20
    • Vancouver

      Metz J, Abreu LFD de, Cherman EA, Monard MC. On the estimation of predictive evaluation measure baselines for multi-label learning [Internet]. Lecture Notes in Artifical Intelligence. 2012 ; 7637 189-198.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/978-3-642-34654-5_20
  • Source: Lecture Notes in Artificial Intelligence. Conference titles: Brazilian Symposium on Artificial Intelligence : Advances in Artificial Intelligence - SBIA. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SPOLAÔR, Newton et al. Filter approach feature selection methods to support multi-label learning based on ReliefF and information gain. Lecture Notes in Artificial Intelligence. Berlin: Springer-Verlag. Disponível em: https://doi.org/10.1007/978-3-642-34459-6_8. Acesso em: 28 nov. 2025. , 2012
    • APA

      Spolaôr, N., Cherman, E. A., Monard, M. C., & Lee, H. D. (2012). Filter approach feature selection methods to support multi-label learning based on ReliefF and information gain. Lecture Notes in Artificial Intelligence. Berlin: Springer-Verlag. doi:10.1007/978-3-642-34459-6_8
    • NLM

      Spolaôr N, Cherman EA, Monard MC, Lee HD. Filter approach feature selection methods to support multi-label learning based on ReliefF and information gain [Internet]. Lecture Notes in Artificial Intelligence. 2012 ; 7589 72-81.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/978-3-642-34459-6_8
    • Vancouver

      Spolaôr N, Cherman EA, Monard MC, Lee HD. Filter approach feature selection methods to support multi-label learning based on ReliefF and information gain [Internet]. Lecture Notes in Artificial Intelligence. 2012 ; 7589 72-81.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/978-3-642-34459-6_8
  • Source: Proceedings. Conference titles: IEEE World Congress on Computational Intelligence - WCCI. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CINTRA, Marcos E e MONARD, Maria Carolina e CAMARGO, Heloisa A. Using fuzzy formal concepts in the genetic generation of fuzzy systems. 2012, Anais.. Piscataway: IEEE, 2012. Disponível em: https://doi.org/10.1109/FUZZ-IEEE.2012.6251310. Acesso em: 28 nov. 2025.
    • APA

      Cintra, M. E., Monard, M. C., & Camargo, H. A. (2012). Using fuzzy formal concepts in the genetic generation of fuzzy systems. In Proceedings. Piscataway: IEEE. doi:10.1109/FUZZ-IEEE.2012.6251310
    • NLM

      Cintra ME, Monard MC, Camargo HA. Using fuzzy formal concepts in the genetic generation of fuzzy systems [Internet]. Proceedings. 2012 ;[citado 2025 nov. 28 ] Available from: https://doi.org/10.1109/FUZZ-IEEE.2012.6251310
    • Vancouver

      Cintra ME, Monard MC, Camargo HA. Using fuzzy formal concepts in the genetic generation of fuzzy systems [Internet]. Proceedings. 2012 ;[citado 2025 nov. 28 ] Available from: https://doi.org/10.1109/FUZZ-IEEE.2012.6251310
  • Source: Expert Systems with Applications. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHERMAN, Everton Alvares e METZ, Jean e MONARD, Maria Carolina. Incorporating label dependency into the binary relevance framework for multi-label classification. Expert Systems with Applications, v. fe 2012, n. 2, p. 1647-1655, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.eswa.2011.06.056. Acesso em: 28 nov. 2025.
    • APA

      Cherman, E. A., Metz, J., & Monard, M. C. (2012). Incorporating label dependency into the binary relevance framework for multi-label classification. Expert Systems with Applications, fe 2012( 2), 1647-1655. doi:10.1016/j.eswa.2011.06.056
    • NLM

      Cherman EA, Metz J, Monard MC. Incorporating label dependency into the binary relevance framework for multi-label classification [Internet]. Expert Systems with Applications. 2012 ; fe 2012( 2): 1647-1655.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.eswa.2011.06.056
    • Vancouver

      Cherman EA, Metz J, Monard MC. Incorporating label dependency into the binary relevance framework for multi-label classification [Internet]. Expert Systems with Applications. 2012 ; fe 2012( 2): 1647-1655.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.eswa.2011.06.056
  • Unidade: ICMC

    Subjects: ANÁLISE DE DADOS, REVISÃO SISTEMÁTICA

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SPOLAÔR, Newton e MONARD, Maria Carolina e LEE, Huei Diana. A systematic review to identify feature selection publications in multi-labeled data. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/63bed043-0f3f-4d5c-8637-fed1dcad3b64/RT%20374.pdf. Acesso em: 28 nov. 2025. , 2012
    • APA

      Spolaôr, N., Monard, M. C., & Lee, H. D. (2012). A systematic review to identify feature selection publications in multi-labeled data. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/63bed043-0f3f-4d5c-8637-fed1dcad3b64/RT%20374.pdf
    • NLM

      Spolaôr N, Monard MC, Lee HD. A systematic review to identify feature selection publications in multi-labeled data [Internet]. 2012 ;[citado 2025 nov. 28 ] Available from: https://repositorio.usp.br/directbitstream/63bed043-0f3f-4d5c-8637-fed1dcad3b64/RT%20374.pdf
    • Vancouver

      Spolaôr N, Monard MC, Lee HD. A systematic review to identify feature selection publications in multi-labeled data [Internet]. 2012 ;[citado 2025 nov. 28 ] Available from: https://repositorio.usp.br/directbitstream/63bed043-0f3f-4d5c-8637-fed1dcad3b64/RT%20374.pdf
  • Source: Anais. Conference titles: Congresso da Sociedade Brasileira de Computação - CSBC. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CINTRA, Marcos Evandro et al. On rule generation approaches for genetic fuzzy systems. 2011, Anais.. Porto Alegre: SBC, 2011. . Acesso em: 28 nov. 2025.
    • APA

      Cintra, M. E., Monard, M. C., Camargo, H. de A., Martin, T. P., & Majidian, A. (2011). On rule generation approaches for genetic fuzzy systems. In Anais. Porto Alegre: SBC.
    • NLM

      Cintra ME, Monard MC, Camargo H de A, Martin TP, Majidian A. On rule generation approaches for genetic fuzzy systems. Anais. 2011 ;[citado 2025 nov. 28 ]
    • Vancouver

      Cintra ME, Monard MC, Camargo H de A, Martin TP, Majidian A. On rule generation approaches for genetic fuzzy systems. Anais. 2011 ;[citado 2025 nov. 28 ]
  • Source: CLEI Electronic Journal. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHERMAN, Everton Alvares e MONARD, Maria Carolina e METZ, Jean. Multi-label problem transformation methods: a case study. CLEI Electronic Journal, v. 14, n. 1, p. 1-10, 2011Tradução . . Disponível em: http://www.clei.cl/cleiej/papers/v14i1p4.pdf. Acesso em: 28 nov. 2025.
    • APA

      Cherman, E. A., Monard, M. C., & Metz, J. (2011). Multi-label problem transformation methods: a case study. CLEI Electronic Journal, 14( 1), 1-10. Recuperado de http://www.clei.cl/cleiej/papers/v14i1p4.pdf
    • NLM

      Cherman EA, Monard MC, Metz J. Multi-label problem transformation methods: a case study [Internet]. CLEI Electronic Journal. 2011 ; 14( 1): 1-10.[citado 2025 nov. 28 ] Available from: http://www.clei.cl/cleiej/papers/v14i1p4.pdf
    • Vancouver

      Cherman EA, Monard MC, Metz J. Multi-label problem transformation methods: a case study [Internet]. CLEI Electronic Journal. 2011 ; 14( 1): 1-10.[citado 2025 nov. 28 ] Available from: http://www.clei.cl/cleiej/papers/v14i1p4.pdf
  • Source: Proceedings. Conference titles: International Conference on Intelligent Systems Design and Applications - ISDA. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CINTRA, Marcos E et al. The use of fuzzy decision trees for coffee rust warning in Brazilian crops. 2011, Anais.. Piscataway: IEEE, 2011. Disponível em: https://doi.org/10.1109/ISDA.2011.6121847. Acesso em: 28 nov. 2025.
    • APA

      Cintra, M. E., Meira, C. A. A., Monard, M. C., Camargo, H. A., & Rodrigues, L. H. A. (2011). The use of fuzzy decision trees for coffee rust warning in Brazilian crops. In Proceedings. Piscataway: IEEE. doi:10.1109/ISDA.2011.6121847
    • NLM

      Cintra ME, Meira CAA, Monard MC, Camargo HA, Rodrigues LHA. The use of fuzzy decision trees for coffee rust warning in Brazilian crops [Internet]. Proceedings. 2011 ;[citado 2025 nov. 28 ] Available from: https://doi.org/10.1109/ISDA.2011.6121847
    • Vancouver

      Cintra ME, Meira CAA, Monard MC, Camargo HA, Rodrigues LHA. The use of fuzzy decision trees for coffee rust warning in Brazilian crops [Internet]. Proceedings. 2011 ;[citado 2025 nov. 28 ] Available from: https://doi.org/10.1109/ISDA.2011.6121847

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025