Filtros : "PROGRAMAÇÃO MATEMÁTICA" "PROGRAMAÇÃO NÃO LINEAR" Removido: "ANÁLISE DE ALGORITMOS" Limpar

Filtros



Refine with date range


  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR, ANÁLISE NUMÉRICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Global convergence of a second-order augmented lagrangian method under an error bound condition. Journal of Optimization Theory and Applications, v. 206, n. artigo 54, p. 1-30, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10957-025-02731-3. Acesso em: 07 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Prado, R. W., Schuverdt, M. L., & Secchin, L. D. (2025). Global convergence of a second-order augmented lagrangian method under an error bound condition. Journal of Optimization Theory and Applications, 206( artigo 54), 1-30. doi:10.1007/s10957-025-02731-3
    • NLM

      Andreani R, Haeser G, Prado RW, Schuverdt ML, Secchin LD. Global convergence of a second-order augmented lagrangian method under an error bound condition [Internet]. Journal of Optimization Theory and Applications. 2025 ; 206( artigo 54): 1-30.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-025-02731-3
    • Vancouver

      Andreani R, Haeser G, Prado RW, Schuverdt ML, Secchin LD. Global convergence of a second-order augmented lagrangian method under an error bound condition [Internet]. Journal of Optimization Theory and Applications. 2025 ; 206( artigo 54): 1-30.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-025-02731-3
  • Source: Abstracts. Conference titles: Conference on Optimization - OP23. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, MÉTODOS NUMÉRICOS, PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Block coordinate descent for smooth nonconvex constrained minimization. 2023, Anais.. Philadelphia: SIAM, 2023. Disponível em: https://www.siam.org/Portals/0/Conferences/OP/OP23_ABSTRACTS.pdf. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2023). Block coordinate descent for smooth nonconvex constrained minimization. In Abstracts. Philadelphia: SIAM. Recuperado de https://www.siam.org/Portals/0/Conferences/OP/OP23_ABSTRACTS.pdf
    • NLM

      Birgin EJG, Martínez JM. Block coordinate descent for smooth nonconvex constrained minimization [Internet]. Abstracts. 2023 ;[citado 2025 nov. 07 ] Available from: https://www.siam.org/Portals/0/Conferences/OP/OP23_ABSTRACTS.pdf
    • Vancouver

      Birgin EJG, Martínez JM. Block coordinate descent for smooth nonconvex constrained minimization [Internet]. Abstracts. 2023 ;[citado 2025 nov. 07 ] Available from: https://www.siam.org/Portals/0/Conferences/OP/OP23_ABSTRACTS.pdf
  • Source: Mathematics of Operations Research. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. On optimality conditions for nonlinear conic programming. Mathematics of Operations Research, v. 47, n. 3, p. 2160-2185, 2022Tradução . . Disponível em: https://doi.org/10.1287/moor.2021.1203. Acesso em: 07 nov. 2025.
    • APA

      Andreani, R., Gómez, W., Haeser, G., Mito, L., & Ramos, A. (2022). On optimality conditions for nonlinear conic programming. Mathematics of Operations Research, 47( 3), 2160-2185. doi:10.1287/moor.2021.1203
    • NLM

      Andreani R, Gómez W, Haeser G, Mito L, Ramos A. On optimality conditions for nonlinear conic programming [Internet]. Mathematics of Operations Research. 2022 ; 47( 3): 2160-2185.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1287/moor.2021.1203
    • Vancouver

      Andreani R, Gómez W, Haeser G, Mito L, Ramos A. On optimality conditions for nonlinear conic programming [Internet]. Mathematics of Operations Research. 2022 ; 47( 3): 2160-2185.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1287/moor.2021.1203
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming. Journal of Optimization Theory and Applications, v. 195, p. 42-78, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10957-022-02056-5. Acesso em: 07 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Mito, L., Ramírez, C. H., & Silveira, T. P. da. (2022). Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming. Journal of Optimization Theory and Applications, 195, 42-78. doi:10.1007/s10957-022-02056-5
    • NLM

      Andreani R, Haeser G, Mito L, Ramírez CH, Silveira TP da. Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming [Internet]. Journal of Optimization Theory and Applications. 2022 ; 195 42-78.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-022-02056-5
    • Vancouver

      Andreani R, Haeser G, Mito L, Ramírez CH, Silveira TP da. Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming [Internet]. Journal of Optimization Theory and Applications. 2022 ; 195 42-78.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-022-02056-5
  • Source: Mathematical Programming Computation. Unidade: IME

    Subjects: OTIMIZAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR, MÉTODOS NUMÉRICOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees. Mathematical Programming Computation, v. 14, n. 1, p. 121-146, 2022Tradução . . Disponível em: https://doi.org/10.1007/s12532-021-00207-9. Acesso em: 07 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Schuverdt, M. L., Secchin, L. D., & Silva e Silva, P. J. (2022). On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees. Mathematical Programming Computation, 14( 1), 121-146. doi:10.1007/s12532-021-00207-9
    • NLM

      Andreani R, Haeser G, Schuverdt ML, Secchin LD, Silva e Silva PJ. On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees [Internet]. Mathematical Programming Computation. 2022 ; 14( 1): 121-146.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s12532-021-00207-9
    • Vancouver

      Andreani R, Haeser G, Schuverdt ML, Secchin LD, Silva e Silva PJ. On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees [Internet]. Mathematical Programming Computation. 2022 ; 14( 1): 121-146.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s12532-021-00207-9
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, MÉTODOS NUMÉRICOS, PROGRAMAÇÃO MATEMÁTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Block coordinate descent for smooth nonconvex constrained minimization. Computational Optimization and Applications, v. 83, p. 1-27, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10589-022-00389-5. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2022). Block coordinate descent for smooth nonconvex constrained minimization. Computational Optimization and Applications, 83, 1-27. doi:10.1007/s10589-022-00389-5
    • NLM

      Birgin EJG, Martínez JM. Block coordinate descent for smooth nonconvex constrained minimization [Internet]. Computational Optimization and Applications. 2022 ; 83 1-27.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10589-022-00389-5
    • Vancouver

      Birgin EJG, Martínez JM. Block coordinate descent for smooth nonconvex constrained minimization [Internet]. Computational Optimization and Applications. 2022 ; 83 1-27.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10589-022-00389-5
  • Source: TOP. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg et al. On the solution of linearly constrained optimization problems by means of barrier algorithms. TOP, v. 29, n. 2, p. 417-441, 2021Tradução . . Disponível em: https://doi.org/10.1007/s11750-020-00559-w. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., Gardenghi, J. L. C., Martínez, J. M., & Santos, S. A. (2021). On the solution of linearly constrained optimization problems by means of barrier algorithms. TOP, 29( 2), 417-441. doi:10.1007/s11750-020-00559-w
    • NLM

      Birgin EJG, Gardenghi JLC, Martínez JM, Santos SA. On the solution of linearly constrained optimization problems by means of barrier algorithms [Internet]. TOP. 2021 ; 29( 2): 417-441.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s11750-020-00559-w
    • Vancouver

      Birgin EJG, Gardenghi JLC, Martínez JM, Santos SA. On the solution of linearly constrained optimization problems by means of barrier algorithms [Internet]. TOP. 2021 ; 29( 2): 417-441.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s11750-020-00559-w
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA, MÉTODOS NUMÉRICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming. Computational Optimization and Applications, v. 79, p. 633-648, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10589-021-00281-8. Acesso em: 07 nov. 2025.
    • APA

      Andreani, R., Fukuda, E. H., Haeser, G., Santos, D. O., & Secchin, L. D. (2021). On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming. Computational Optimization and Applications, 79, 633-648. doi:10.1007/s10589-021-00281-8
    • NLM

      Andreani R, Fukuda EH, Haeser G, Santos DO, Secchin LD. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming [Internet]. Computational Optimization and Applications. 2021 ; 79 633-648.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10589-021-00281-8
    • Vancouver

      Andreani R, Fukuda EH, Haeser G, Santos DO, Secchin LD. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming [Internet]. Computational Optimization and Applications. 2021 ; 79 633-648.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10589-021-00281-8
  • Source: Mathematical Programming. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO CONVEXA, PROGRAMAÇÃO NÃO LINEAR

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel e HINDER, Oliver e YE, Yinyu. On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods. Mathematical Programming, v. 186, n. 1-2, p. 257-288, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10107-019-01454-4. Acesso em: 07 nov. 2025.
    • APA

      Haeser, G., Hinder, O., & Ye, Y. (2021). On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods. Mathematical Programming, 186( 1-2), 257-288. doi:10.1007/s10107-019-01454-4
    • NLM

      Haeser G, Hinder O, Ye Y. On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods [Internet]. Mathematical Programming. 2021 ; 186( 1-2): 257-288.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10107-019-01454-4
    • Vancouver

      Haeser G, Hinder O, Ye Y. On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods [Internet]. Mathematical Programming. 2021 ; 186( 1-2): 257-288.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10107-019-01454-4
  • Source: Journal of Optimization Theory and Applications. Unidade: ICMC

    Subjects: EQUILÍBRIO, PROGRAMAÇÃO MATEMÁTICA, OTIMIZAÇÃO RESTRITA, PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HELOU, Elias Salomão e SANTOS, Sandra Augusta e SIMÕES, Lucas Eduardo Azevedo. Analysis of a new sequential optimality condition applied to mathematical programs with equilibrium constraints. Journal of Optimization Theory and Applications, v. 185, p. 433-447, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10957-020-01658-1. Acesso em: 07 nov. 2025.
    • APA

      Helou, E. S., Santos, S. A., & Simões, L. E. A. (2020). Analysis of a new sequential optimality condition applied to mathematical programs with equilibrium constraints. Journal of Optimization Theory and Applications, 185, 433-447. doi:10.1007/s10957-020-01658-1
    • NLM

      Helou ES, Santos SA, Simões LEA. Analysis of a new sequential optimality condition applied to mathematical programs with equilibrium constraints [Internet]. Journal of Optimization Theory and Applications. 2020 ; 185 433-447.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-020-01658-1
    • Vancouver

      Helou ES, Santos SA, Simões LEA. Analysis of a new sequential optimality condition applied to mathematical programs with equilibrium constraints [Internet]. Journal of Optimization Theory and Applications. 2020 ; 185 433-447.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-020-01658-1
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel e RAMOS, A. New constraint qualifications with second-order properties in nonlinear optimization. Journal of Optimization Theory and Applications, v. 184, p. 494-506, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10957-019-01603-x. Acesso em: 07 nov. 2025.
    • APA

      Haeser, G., & Ramos, A. (2020). New constraint qualifications with second-order properties in nonlinear optimization. Journal of Optimization Theory and Applications, 184, 494-506. doi:10.1007/s10957-019-01603-x
    • NLM

      Haeser G, Ramos A. New constraint qualifications with second-order properties in nonlinear optimization [Internet]. Journal of Optimization Theory and Applications. 2020 ; 184 494-506.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-019-01603-x
    • Vancouver

      Haeser G, Ramos A. New constraint qualifications with second-order properties in nonlinear optimization [Internet]. Journal of Optimization Theory and Applications. 2020 ; 184 494-506.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-019-01603-x
  • Source: Mathematical Programming. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto e HAESER, Gabriel e VIANA, Daiana S. Optimality conditions and global convergence for nonlinear semidefinite programming. Mathematical Programming, v. 180, n. 1-2, p. 203-235, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10107-018-1354-5. Acesso em: 07 nov. 2025.
    • APA

      Andreani, R., Haeser, G., & Viana, D. S. (2020). Optimality conditions and global convergence for nonlinear semidefinite programming. Mathematical Programming, 180( 1-2), 203-235. doi:10.1007/s10107-018-1354-5
    • NLM

      Andreani R, Haeser G, Viana DS. Optimality conditions and global convergence for nonlinear semidefinite programming [Internet]. Mathematical Programming. 2020 ; 180( 1-2): 203-235.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10107-018-1354-5
    • Vancouver

      Andreani R, Haeser G, Viana DS. Optimality conditions and global convergence for nonlinear semidefinite programming [Internet]. Mathematical Programming. 2020 ; 180( 1-2): 203-235.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10107-018-1354-5
  • Source: Mathematics of Computation. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, MÉTODOS NUMÉRICOS DE OTIMIZAÇÃO, PROGRAMAÇÃO NÃO LINEAR

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e KREJIĆ, Nataša e MARTÍNEZ, José Mário. Iteration and evaluation complexity for the minimization of functions whose computation is intrinsically inexact. Mathematics of Computation, v. 89, p. 253-278, 2020Tradução . . Disponível em: https://doi.org/10.1090/mcom/3445. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., Krejić, N., & Martínez, J. M. (2020). Iteration and evaluation complexity for the minimization of functions whose computation is intrinsically inexact. Mathematics of Computation, 89, 253-278. doi:10.1090/mcom/3445
    • NLM

      Birgin EJG, Krejić N, Martínez JM. Iteration and evaluation complexity for the minimization of functions whose computation is intrinsically inexact [Internet]. Mathematics of Computation. 2020 ; 89 253-278.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1090/mcom/3445
    • Vancouver

      Birgin EJG, Krejić N, Martínez JM. Iteration and evaluation complexity for the minimization of functions whose computation is intrinsically inexact [Internet]. Mathematics of Computation. 2020 ; 89 253-278.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1090/mcom/3445
  • Source: SIAM Journal on Optimization. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, TEOREMA DE EXISTÊNCIA, PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. New sequential optimality conditions for mathematical programs with complementarity constraints and algorithmic consequences. SIAM Journal on Optimization, v. 29, n. 4, p. 3201-3230, 2019Tradução . . Disponível em: https://doi.org/10.1137/18M121040X. Acesso em: 07 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Secchin, L. D., & Silva, P. J. S. (2019). New sequential optimality conditions for mathematical programs with complementarity constraints and algorithmic consequences. SIAM Journal on Optimization, 29( 4), 3201-3230. doi:10.1137/18M121040X
    • NLM

      Andreani R, Haeser G, Secchin LD, Silva PJS. New sequential optimality conditions for mathematical programs with complementarity constraints and algorithmic consequences [Internet]. SIAM Journal on Optimization. 2019 ; 29( 4): 3201-3230.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1137/18M121040X
    • Vancouver

      Andreani R, Haeser G, Secchin LD, Silva PJS. New sequential optimality conditions for mathematical programs with complementarity constraints and algorithmic consequences [Internet]. SIAM Journal on Optimization. 2019 ; 29( 4): 3201-3230.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1137/18M121040X
  • Source: SIAM Journal on Optimization. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR, TEORIA DOS JOGOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, Luís Felipe e HAESER, Gabriel e ROJAS, Frank Navarro. Optimality conditions and constraint qualifications for generalized Nash equilibrium problems and their practical implications. SIAM Journal on Optimization, v. 29, n. 1, p. 31-54, 2019Tradução . . Disponível em: https://doi.org/10.1137/17m1162524. Acesso em: 07 nov. 2025.
    • APA

      Bueno, L. F., Haeser, G., & Rojas, F. N. (2019). Optimality conditions and constraint qualifications for generalized Nash equilibrium problems and their practical implications. SIAM Journal on Optimization, 29( 1), 31-54. doi:10.1137/17m1162524
    • NLM

      Bueno LF, Haeser G, Rojas FN. Optimality conditions and constraint qualifications for generalized Nash equilibrium problems and their practical implications [Internet]. SIAM Journal on Optimization. 2019 ; 29( 1): 31-54.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1137/17m1162524
    • Vancouver

      Bueno LF, Haeser G, Rojas FN. Optimality conditions and constraint qualifications for generalized Nash equilibrium problems and their practical implications [Internet]. SIAM Journal on Optimization. 2019 ; 29( 1): 31-54.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1137/17m1162524
  • Source: Mathematical Programming. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel e LIU, Hongcheng e YE, Yinyu. Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary. Mathematical Programming, v. 178, n. 1-2, p. 263-299, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10107-018-1290-4. Acesso em: 07 nov. 2025.
    • APA

      Haeser, G., Liu, H., & Ye, Y. (2019). Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary. Mathematical Programming, 178( 1-2), 263-299. doi:10.1007/s10107-018-1290-4
    • NLM

      Haeser G, Liu H, Ye Y. Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary [Internet]. Mathematical Programming. 2019 ; 178( 1-2): 263-299.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10107-018-1290-4
    • Vancouver

      Haeser G, Liu H, Ye Y. Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary [Internet]. Mathematical Programming. 2019 ; 178( 1-2): 263-299.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10107-018-1290-4
  • Source: Book of abstracts. Conference titles: International Symposium on Mathematical Programming - ISMP. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MITO, Leonardo et al. Augmented Lagrangian for nonlinear SDPs applied to the covering problem. 2018, Anais.. Philadelphia: Mathematical Optimization Society, 2018. Disponível em: https://ismp2018.sciencesconf.org/data/bookFullProgram.pdf. Acesso em: 07 nov. 2025.
    • APA

      Mito, L., Haeser, G., Birgin, E. J. G., Viana, D., & Bofill, W. (2018). Augmented Lagrangian for nonlinear SDPs applied to the covering problem. In Book of abstracts. Philadelphia: Mathematical Optimization Society. Recuperado de https://ismp2018.sciencesconf.org/data/bookFullProgram.pdf
    • NLM

      Mito L, Haeser G, Birgin EJG, Viana D, Bofill W. Augmented Lagrangian for nonlinear SDPs applied to the covering problem [Internet]. Book of abstracts. 2018 ;[citado 2025 nov. 07 ] Available from: https://ismp2018.sciencesconf.org/data/bookFullProgram.pdf
    • Vancouver

      Mito L, Haeser G, Birgin EJG, Viana D, Bofill W. Augmented Lagrangian for nonlinear SDPs applied to the covering problem [Internet]. Book of abstracts. 2018 ;[citado 2025 nov. 07 ] Available from: https://ismp2018.sciencesconf.org/data/bookFullProgram.pdf
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEHLING, Roger et al. On a conjecture in second-order optimality conditions. Journal of Optimization Theory and Applications, v. 176, n. 3, p. 625-633, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10957-018-1229-1. Acesso em: 07 nov. 2025.
    • APA

      Behling, R., Haeser, G., Ramos, A., & Viana, D. S. (2018). On a conjecture in second-order optimality conditions. Journal of Optimization Theory and Applications, 176( 3), 625-633. doi:10.1007/s10957-018-1229-1
    • NLM

      Behling R, Haeser G, Ramos A, Viana DS. On a conjecture in second-order optimality conditions [Internet]. Journal of Optimization Theory and Applications. 2018 ; 176( 3): 625-633.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-018-1229-1
    • Vancouver

      Behling R, Haeser G, Ramos A, Viana DS. On a conjecture in second-order optimality conditions [Internet]. Journal of Optimization Theory and Applications. 2018 ; 176( 3): 625-633.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-018-1229-1
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel. A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms. Computational Optimization and Applications, v. 70, n. 2, p. 615–639, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10589-018-0005-3. Acesso em: 07 nov. 2025.
    • APA

      Haeser, G. (2018). A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms. Computational Optimization and Applications, 70( 2), 615–639. doi:10.1007/s10589-018-0005-3
    • NLM

      Haeser G. A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms [Internet]. Computational Optimization and Applications. 2018 ; 70( 2): 615–639.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10589-018-0005-3
    • Vancouver

      Haeser G. A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms [Internet]. Computational Optimization and Applications. 2018 ; 70( 2): 615–639.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10589-018-0005-3
  • Source: Mathematics of Computation. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, MÉTODOS NUMÉRICOS DE OTIMIZAÇÃO, PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO ESTOCÁSTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e KREJIC, N e MARTÍNEZ, J. M. On the employment of inexact restoration for the minimization of functions whose evaluation is subject to errors. Mathematics of Computation, v. 87, n. 311, p. 1307-1326, 2018Tradução . . Disponível em: https://doi.org/10.1090/mcom/3246. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., Krejic, N., & Martínez, J. M. (2018). On the employment of inexact restoration for the minimization of functions whose evaluation is subject to errors. Mathematics of Computation, 87( 311), 1307-1326. doi:10.1090/mcom/3246
    • NLM

      Birgin EJG, Krejic N, Martínez JM. On the employment of inexact restoration for the minimization of functions whose evaluation is subject to errors [Internet]. Mathematics of Computation. 2018 ; 87( 311): 1307-1326.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1090/mcom/3246
    • Vancouver

      Birgin EJG, Krejic N, Martínez JM. On the employment of inexact restoration for the minimization of functions whose evaluation is subject to errors [Internet]. Mathematics of Computation. 2018 ; 87( 311): 1307-1326.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1090/mcom/3246

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025