On the employment of inexact restoration for the minimization of functions whose evaluation is subject to errors (2018)
- Authors:
- Autor USP: BIRGIN, ERNESTO JULIAN GOLDBERG - IME
- Unidade: IME
- DOI: 10.1090/mcom/3246
- Subjects: PROGRAMAÇÃO MATEMÁTICA; MÉTODOS NUMÉRICOS DE OTIMIZAÇÃO; PROGRAMAÇÃO NÃO LINEAR; PROGRAMAÇÃO ESTOCÁSTICA
- Keywords: inexact restoration; global convergence; numerical experiments
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Providence
- Date published: 2018
- Source:
- Título: Mathematics of Computation
- ISSN: 0025-5718
- Volume/Número/Paginação/Ano: v. 87, n. 311, p. 1307-1326, 2018
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BIRGIN, Ernesto Julian Goldberg e KREJIC, N e MARTÍNEZ, J. M. On the employment of inexact restoration for the minimization of functions whose evaluation is subject to errors. Mathematics of Computation, v. 87, n. 311, p. 1307-1326, 2018Tradução . . Disponível em: https://doi.org/10.1090/mcom/3246. Acesso em: 12 fev. 2026. -
APA
Birgin, E. J. G., Krejic, N., & Martínez, J. M. (2018). On the employment of inexact restoration for the minimization of functions whose evaluation is subject to errors. Mathematics of Computation, 87( 311), 1307-1326. doi:10.1090/mcom/3246 -
NLM
Birgin EJG, Krejic N, Martínez JM. On the employment of inexact restoration for the minimization of functions whose evaluation is subject to errors [Internet]. Mathematics of Computation. 2018 ; 87( 311): 1307-1326.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1090/mcom/3246 -
Vancouver
Birgin EJG, Krejic N, Martínez JM. On the employment of inexact restoration for the minimization of functions whose evaluation is subject to errors [Internet]. Mathematics of Computation. 2018 ; 87( 311): 1307-1326.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1090/mcom/3246 - An augmented Lagrangian method with finite termination
- Packing circles within ellipses
- Spectral projected gradient and variable metric methods for optimization with linear inequalities
- Sparse Projected-Gradient Method As a Linear-Scaling Low-Memory Alternative to Diagonalization in Self-Consistent Field Electronic Structure Calculations
- The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems
- On acceleration schemes and the choice of subproblem’s constraints in augmented Lagrangian methods
- Penalizing simple constraints on augmented Lagrangian methods
- Dykstra’s algorithm and robust stopping criteria
- Outer trust-region method for constrained optimization
- On the application of an augmented Lagrangian algorithm to some portfolio problems
Informações sobre o DOI: 10.1090/mcom/3246 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2874510.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
