On the employment of inexact restoration for the minimization of functions whose evaluation is subject to errors (2018)
- Authors:
- Autor USP: BIRGIN, ERNESTO JULIAN GOLDBERG - IME
- Unidade: IME
- DOI: 10.1090/mcom/3246
- Subjects: PROGRAMAÇÃO MATEMÁTICA; MÉTODOS NUMÉRICOS DE OTIMIZAÇÃO; PROGRAMAÇÃO NÃO LINEAR; PROGRAMAÇÃO ESTOCÁSTICA
- Keywords: inexact restoration; global convergence; numerical experiments
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Providence
- Date published: 2018
- Source:
- Título: Mathematics of Computation
- ISSN: 0025-5718
- Volume/Número/Paginação/Ano: v. 87, n. 311, p. 1307-1326, 2018
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: bronze
-
ABNT
BIRGIN, Ernesto Julian Goldberg e KREJIC, N e MARTÍNEZ, J. M. On the employment of inexact restoration for the minimization of functions whose evaluation is subject to errors. Mathematics of Computation, v. 87, n. 311, p. 1307-1326, 2018Tradução . . Disponível em: https://doi.org/10.1090/mcom/3246. Acesso em: 27 dez. 2025. -
APA
Birgin, E. J. G., Krejic, N., & Martínez, J. M. (2018). On the employment of inexact restoration for the minimization of functions whose evaluation is subject to errors. Mathematics of Computation, 87( 311), 1307-1326. doi:10.1090/mcom/3246 -
NLM
Birgin EJG, Krejic N, Martínez JM. On the employment of inexact restoration for the minimization of functions whose evaluation is subject to errors [Internet]. Mathematics of Computation. 2018 ; 87( 311): 1307-1326.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1090/mcom/3246 -
Vancouver
Birgin EJG, Krejic N, Martínez JM. On the employment of inexact restoration for the minimization of functions whose evaluation is subject to errors [Internet]. Mathematics of Computation. 2018 ; 87( 311): 1307-1326.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1090/mcom/3246 - Augmented Lagrangian methods under the constant positive linear dependence constraint qualification
- Globally convergent inexact quasi-Newton methods for solving nonlinear systems
- Augmented Lagrangian methods under the constant positive linear dependence constraint qualification
- Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization
- Evaluating bound-constrained minimization software
- Sequential equality-constrained optimization for nonlinear programming
- Optimality properties of an Augmented Lagrangian method on infeasible problems
- On the application of an augmented Lagrangian algorithm to some portfolio problems
- Two-stage two-dimensional guillotine cutting stock problems with usable leftover
- Practical augmented Lagrangian methods for constrained optimization
Informações sobre o DOI: 10.1090/mcom/3246 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2874510.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
