Filtros : "Computational Optimization and Applications" "Brasil" Removido: "Financiamento FAPESP" Limpar

Filtros



Refine with date range


  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA, MÉTODOS NUMÉRICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming. Computational Optimization and Applications, v. 79, p. 633-648, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10589-021-00281-8. Acesso em: 06 dez. 2025.
    • APA

      Andreani, R., Fukuda, E. H., Haeser, G., Santos, D. O., & Secchin, L. D. (2021). On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming. Computational Optimization and Applications, 79, 633-648. doi:10.1007/s10589-021-00281-8
    • NLM

      Andreani R, Fukuda EH, Haeser G, Santos DO, Secchin LD. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming [Internet]. Computational Optimization and Applications. 2021 ; 79 633-648.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10589-021-00281-8
    • Vancouver

      Andreani R, Fukuda EH, Haeser G, Santos DO, Secchin LD. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming [Internet]. Computational Optimization and Applications. 2021 ; 79 633-648.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10589-021-00281-8
  • Source: Computational Optimization and Applications. Conference titles: Brazilian Workshop on Continuous Optimization. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, L. F et al. An Augmented Lagrangian method for quasi-equilibrium problems. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1007/s10589-020-00180-4. Acesso em: 06 dez. 2025. , 2020
    • APA

      Bueno, L. F., Haeser, G., Lara, F., & Rojas, F. N. (2020). An Augmented Lagrangian method for quasi-equilibrium problems. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1007/s10589-020-00180-4
    • NLM

      Bueno LF, Haeser G, Lara F, Rojas FN. An Augmented Lagrangian method for quasi-equilibrium problems [Internet]. Computational Optimization and Applications. 2020 ; 76( 3): 737-766.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10589-020-00180-4
    • Vancouver

      Bueno LF, Haeser G, Lara F, Rojas FN. An Augmented Lagrangian method for quasi-equilibrium problems [Internet]. Computational Optimization and Applications. 2020 ; 76( 3): 737-766.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10589-020-00180-4
  • Source: Computational Optimization and Applications. Conference titles: Brazilian Workshop on Continuous Optimization. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, Luís Felipe e HAESER, Gabriel e SANTOS, Luiz-Rafael. Towards an efficient augmented Lagrangian method for convex quadratic programming. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1007/s10589-019-00161-2. Acesso em: 06 dez. 2025. , 2020
    • APA

      Bueno, L. F., Haeser, G., & Santos, L. -R. (2020). Towards an efficient augmented Lagrangian method for convex quadratic programming. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1007/s10589-019-00161-2
    • NLM

      Bueno LF, Haeser G, Santos L-R. Towards an efficient augmented Lagrangian method for convex quadratic programming [Internet]. Computational Optimization and Applications. 2020 ; 76( 3): 767-800.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10589-019-00161-2
    • Vancouver

      Bueno LF, Haeser G, Santos L-R. Towards an efficient augmented Lagrangian method for convex quadratic programming [Internet]. Computational Optimization and Applications. 2020 ; 76( 3): 767-800.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10589-019-00161-2
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: OTIMIZAÇÃO MATEMÁTICA, PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTINEZ, José Mario. A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization. Computational Optimization and Applications, v. 73, n. 3, p. 707-753, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10589-019-00089-7. Acesso em: 06 dez. 2025.
    • APA

      Birgin, E. J. G., & Martinez, J. M. (2019). A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization. Computational Optimization and Applications, 73( 3), 707-753. doi:10.1007/s10589-019-00089-7
    • NLM

      Birgin EJG, Martinez JM. A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization [Internet]. Computational Optimization and Applications. 2019 ; 73( 3): 707-753.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10589-019-00089-7
    • Vancouver

      Birgin EJG, Martinez JM. A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization [Internet]. Computational Optimization and Applications. 2019 ; 73( 3): 707-753.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10589-019-00089-7
  • Source: Computational Optimization and Applications. Unidade: ICMC

    Subjects: FUNÇÕES ESPECIAIS, APROXIMAÇÃO, MÉTODOS NUMÉRICOS DE OTIMIZAÇÃO, MÉTODOS ITERATIVOS, OTIMIZAÇÃO MATEMÁTICA, OTIMIZAÇÃO GLOBAL, OTIMIZAÇÃO IRRESTRITA, OTIMIZAÇÃO CONVEXA, OTIMIZAÇÃO ESTOCÁSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HELOU, Elias Salomão e SANTOS, Sandra A. e SIMÕES, Lucas E. A. A fast gradient and function sampling method for finite-max functions. Computational Optimization and Applications, v. 71, n. 3, p. 673-717, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10589-018-0030-2. Acesso em: 06 dez. 2025.
    • APA

      Helou, E. S., Santos, S. A., & Simões, L. E. A. (2018). A fast gradient and function sampling method for finite-max functions. Computational Optimization and Applications, 71( 3), 673-717. doi:10.1007/s10589-018-0030-2
    • NLM

      Helou ES, Santos SA, Simões LEA. A fast gradient and function sampling method for finite-max functions [Internet]. Computational Optimization and Applications. 2018 ; 71( 3): 673-717.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10589-018-0030-2
    • Vancouver

      Helou ES, Santos SA, Simões LEA. A fast gradient and function sampling method for finite-max functions [Internet]. Computational Optimization and Applications. 2018 ; 71( 3): 673-717.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10589-018-0030-2
  • Source: Computational Optimization and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e HAESER, Gabriel e RAMOS, Alberto. Augmented Lagrangians with constrained subproblems and convergence to second-order stationary points. Computational Optimization and Applications, v. 69, n. 1, p. 51–75, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10589-017-9937-2. Acesso em: 06 dez. 2025.
    • APA

      Birgin, E. J. G., Haeser, G., & Ramos, A. (2018). Augmented Lagrangians with constrained subproblems and convergence to second-order stationary points. Computational Optimization and Applications, 69( 1), 51–75. doi:10.1007/s10589-017-9937-2
    • NLM

      Birgin EJG, Haeser G, Ramos A. Augmented Lagrangians with constrained subproblems and convergence to second-order stationary points [Internet]. Computational Optimization and Applications. 2018 ; 69( 1): 51–75.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10589-017-9937-2
    • Vancouver

      Birgin EJG, Haeser G, Ramos A. Augmented Lagrangians with constrained subproblems and convergence to second-order stationary points [Internet]. Computational Optimization and Applications. 2018 ; 69( 1): 51–75.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10589-017-9937-2
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, OTIMIZAÇÃO MATEMÁTICA, PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e BUENO, L. F e MARTINEZ, José Mario. Sequential equality-constrained optimization for nonlinear programming. Computational Optimization and Applications, 2016Tradução . . Disponível em: https://doi.org/10.1007/s10589-016-9849-6. Acesso em: 06 dez. 2025.
    • APA

      Birgin, E. J. G., Bueno, L. F., & Martinez, J. M. (2016). Sequential equality-constrained optimization for nonlinear programming. Computational Optimization and Applications. doi:10.1007/s10589-016-9849-6
    • NLM

      Birgin EJG, Bueno LF, Martinez JM. Sequential equality-constrained optimization for nonlinear programming [Internet]. Computational Optimization and Applications. 2016 ;[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10589-016-9849-6
    • Vancouver

      Birgin EJG, Bueno LF, Martinez JM. Sequential equality-constrained optimization for nonlinear programming [Internet]. Computational Optimization and Applications. 2016 ;[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10589-016-9849-6
  • Source: Computational Optimization and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTINEZ, J. M. Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization. Computational Optimization and Applications, v. 51, n. 3, p. 941-965, 2012Tradução . . Disponível em: https://doi.org/10.1007/s10589-011-9396-0. Acesso em: 06 dez. 2025.
    • APA

      Birgin, E. J. G., & Martinez, J. M. (2012). Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization. Computational Optimization and Applications, 51( 3), 941-965. doi:10.1007/s10589-011-9396-0
    • NLM

      Birgin EJG, Martinez JM. Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization [Internet]. Computational Optimization and Applications. 2012 ; 51( 3): 941-965.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10589-011-9396-0
    • Vancouver

      Birgin EJG, Martinez JM. Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization [Internet]. Computational Optimization and Applications. 2012 ; 51( 3): 941-965.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10589-011-9396-0
  • Source: Computational Optimization and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization. Computational Optimization and Applications, v. 39, n. 1, p. 1-16, 2008Tradução . . Disponível em: https://doi.org/10.1007/s10589-007-9050-z. Acesso em: 06 dez. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2008). Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization. Computational Optimization and Applications, 39( 1), 1-16. doi:10.1007/s10589-007-9050-z
    • NLM

      Birgin EJG, Martínez JM. Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization [Internet]. Computational Optimization and Applications. 2008 ; 39( 1): 1-16.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10589-007-9050-z
    • Vancouver

      Birgin EJG, Martínez JM. Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization [Internet]. Computational Optimization and Applications. 2008 ; 39( 1): 1-16.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10589-007-9050-z
  • Source: Computational Optimization and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e CASTILLO, Romulo A e MARTINEZ, Jesus Manuel. Numerical comparison of Augmented Lagrangian algorithms for nonconvex problems. Computational Optimization and Applications, v. 31, n. 1, p. 31-55, 2005Tradução . . Disponível em: https://doi.org/10.1007/s10589-005-1066-7. Acesso em: 06 dez. 2025.
    • APA

      Birgin, E. J. G., Castillo, R. A., & Martinez, J. M. (2005). Numerical comparison of Augmented Lagrangian algorithms for nonconvex problems. Computational Optimization and Applications, 31( 1), 31-55. doi:10.1007/s10589-005-1066-7
    • NLM

      Birgin EJG, Castillo RA, Martinez JM. Numerical comparison of Augmented Lagrangian algorithms for nonconvex problems [Internet]. Computational Optimization and Applications. 2005 ; 31( 1): 31-55.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10589-005-1066-7
    • Vancouver

      Birgin EJG, Castillo RA, Martinez JM. Numerical comparison of Augmented Lagrangian algorithms for nonconvex problems [Internet]. Computational Optimization and Applications. 2005 ; 31( 1): 31-55.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10589-005-1066-7
  • Source: Computational Optimization and Applications. Unidade: IME

    Assunto: MÉTODOS NUMÉRICOS DE OTIMIZAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Large-scale active-set box-constrained optimization method with spectral projected gradients. Computational Optimization and Applications, v. 23, n. 1, p. 101-125, 2002Tradução . . Disponível em: https://doi.org/10.1023/A:1019928808826. Acesso em: 06 dez. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2002). Large-scale active-set box-constrained optimization method with spectral projected gradients. Computational Optimization and Applications, 23( 1), 101-125. doi:10.1023/A:1019928808826
    • NLM

      Birgin EJG, Martínez JM. Large-scale active-set box-constrained optimization method with spectral projected gradients [Internet]. Computational Optimization and Applications. 2002 ; 23( 1): 101-125.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1023/A:1019928808826
    • Vancouver

      Birgin EJG, Martínez JM. Large-scale active-set box-constrained optimization method with spectral projected gradients [Internet]. Computational Optimization and Applications. 2002 ; 23( 1): 101-125.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1023/A:1019928808826

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025