A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization (2019)
- Authors:
- Autor USP: BIRGIN, ERNESTO JULIAN GOLDBERG - IME
- Unidade: IME
- DOI: 10.1007/s10589-019-00089-7
- Subjects: OTIMIZAÇÃO MATEMÁTICA; PROGRAMAÇÃO MATEMÁTICA
- Keywords: smooth unconstrained minimization; bunch–Parlett–Kaufman factorizations; regularization; Newton-type methods
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Computational Optimization and Applications
- ISSN: 0926-6003
- Volume/Número/Paginação/Ano: v. 73, n. 3, p. 707-753, 2019
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BIRGIN, Ernesto Julian Goldberg e MARTINEZ, José Mario. A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization. Computational Optimization and Applications, v. 73, n. 3, p. 707-753, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10589-019-00089-7. Acesso em: 13 fev. 2026. -
APA
Birgin, E. J. G., & Martinez, J. M. (2019). A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization. Computational Optimization and Applications, 73( 3), 707-753. doi:10.1007/s10589-019-00089-7 -
NLM
Birgin EJG, Martinez JM. A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization [Internet]. Computational Optimization and Applications. 2019 ; 73( 3): 707-753.[citado 2026 fev. 13 ] Available from: https://doi.org/10.1007/s10589-019-00089-7 -
Vancouver
Birgin EJG, Martinez JM. A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization [Internet]. Computational Optimization and Applications. 2019 ; 73( 3): 707-753.[citado 2026 fev. 13 ] Available from: https://doi.org/10.1007/s10589-019-00089-7 - An augmented Lagrangian method with finite termination
- Packing circles within ellipses
- Spectral projected gradient and variable metric methods for optimization with linear inequalities
- Sparse Projected-Gradient Method As a Linear-Scaling Low-Memory Alternative to Diagonalization in Self-Consistent Field Electronic Structure Calculations
- The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems
- On acceleration schemes and the choice of subproblem’s constraints in augmented Lagrangian methods
- Penalizing simple constraints on augmented Lagrangian methods
- Dykstra’s algorithm and robust stopping criteria
- Outer trust-region method for constrained optimization
- On the application of an augmented Lagrangian algorithm to some portfolio problems
Informações sobre o DOI: 10.1007/s10589-019-00089-7 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2933588.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
