Filtros : "ATRATORES" "SISTEMAS DINÂMICOS" Removidos: "SEMIGRUPOS NÃO LINEARES" "2016" Limpar

Filtros



Refine with date range


  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES IMPULSIVAS, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e UZAL, José Manuel. Global attractors for a class of discrete dynamical systems. Journal of Dynamics and Differential Equations, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-024-10356-9. Acesso em: 05 nov. 2024.
    • APA

      Bonotto, E. de M., & Uzal, J. M. (2024). Global attractors for a class of discrete dynamical systems. Journal of Dynamics and Differential Equations. doi:10.1007/s10884-024-10356-9
    • NLM

      Bonotto E de M, Uzal JM. Global attractors for a class of discrete dynamical systems [Internet]. Journal of Dynamics and Differential Equations. 2024 ;[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s10884-024-10356-9
    • Vancouver

      Bonotto E de M, Uzal JM. Global attractors for a class of discrete dynamical systems [Internet]. Journal of Dynamics and Differential Equations. 2024 ;[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s10884-024-10356-9
  • Source: Nonlinear Analysis: Hybrid Systems. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, ATRATORES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e KALITA, Piotr. Long-time behavior for impulsive generalized semiflows. Nonlinear Analysis: Hybrid Systems, v. 51, p. 1-25, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.nahs.2023.101432. Acesso em: 05 nov. 2024.
    • APA

      Bonotto, E. de M., & Kalita, P. (2024). Long-time behavior for impulsive generalized semiflows. Nonlinear Analysis: Hybrid Systems, 51, 1-25. doi:10.1016/j.nahs.2023.101432
    • NLM

      Bonotto E de M, Kalita P. Long-time behavior for impulsive generalized semiflows [Internet]. Nonlinear Analysis: Hybrid Systems. 2024 ; 51 1-25.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.nahs.2023.101432
    • Vancouver

      Bonotto E de M, Kalita P. Long-time behavior for impulsive generalized semiflows [Internet]. Nonlinear Analysis: Hybrid Systems. 2024 ; 51 1-25.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.nahs.2023.101432
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, PROBLEMAS DE CONTORNO, SISTEMAS DINÂMICOS

    Disponível em 2026-07-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-LÁZARO, Heraclio et al. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain. Journal of Differential Equations, v. 393, p. 58-101, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.02.005. Acesso em: 05 nov. 2024.
    • APA

      López-Lázaro, H., Nascimento, M. J. D., Takaessu Junior, C. R., & Azevedo, V. T. (2024). Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain. Journal of Differential Equations, 393, 58-101. doi:10.1016/j.jde.2024.02.005
    • NLM

      López-Lázaro H, Nascimento MJD, Takaessu Junior CR, Azevedo VT. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain [Internet]. Journal of Differential Equations. 2024 ; 393 58-101.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jde.2024.02.005
    • Vancouver

      López-Lázaro H, Nascimento MJD, Takaessu Junior CR, Azevedo VT. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain [Internet]. Journal of Differential Equations. 2024 ; 393 58-101.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jde.2024.02.005
  • Source: Journal ofDifferentialEquations. Unidade: ICMC

    Subjects: ATRATORES, SISTEMAS DINÂMICOS, EQUAÇÕES DE EVOLUÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e DEMUNER, Daniela Paula e SOUTO, G. M. Recursiveness on impulsive dynamical systems: minimality, non-wandering points, the center of Birkhoff and attractors. Journal ofDifferentialEquations, v. 410, p. 46-75, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.07.017. Acesso em: 05 nov. 2024.
    • APA

      Bonotto, E. de M., Demuner, D. P., & Souto, G. M. (2024). Recursiveness on impulsive dynamical systems: minimality, non-wandering points, the center of Birkhoff and attractors. Journal ofDifferentialEquations, 410, 46-75. doi:10.1016/j.jde.2024.07.017
    • NLM

      Bonotto E de M, Demuner DP, Souto GM. Recursiveness on impulsive dynamical systems: minimality, non-wandering points, the center of Birkhoff and attractors [Internet]. Journal ofDifferentialEquations. 2024 ; 410 46-75.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jde.2024.07.017
    • Vancouver

      Bonotto E de M, Demuner DP, Souto GM. Recursiveness on impulsive dynamical systems: minimality, non-wandering points, the center of Birkhoff and attractors [Internet]. Journal ofDifferentialEquations. 2024 ; 410 46-75.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jde.2024.07.017
  • Source: Revista Matematica Complutense. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAPPICY, Phillipo. Sturm attractors for fully nonlinear parabolic equations. Revista Matematica Complutense, v. 36, n. 3, p. 725-747, 2023Tradução . . Disponível em: https://doi.org/10.1007/s13163-022-00435-0. Acesso em: 05 nov. 2024.
    • APA

      Lappicy, P. (2023). Sturm attractors for fully nonlinear parabolic equations. Revista Matematica Complutense, 36( 3), 725-747. doi:10.1007/s13163-022-00435-0
    • NLM

      Lappicy P. Sturm attractors for fully nonlinear parabolic equations [Internet]. Revista Matematica Complutense. 2023 ; 36( 3): 725-747.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s13163-022-00435-0
    • Vancouver

      Lappicy P. Sturm attractors for fully nonlinear parabolic equations [Internet]. Revista Matematica Complutense. 2023 ; 36( 3): 725-747.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s13163-022-00435-0
  • Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, ATRATORES, TEORIA DE SISTEMAS, EQUAÇÕES DE EVOLUÇÃO, EQUAÇÕES IMPULSIVAS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ACCARINI, Luiza Gomes. Teoria de atratores em sistemas dinâmicos impulsivos. 2022. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2022. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-24032022-095423/. Acesso em: 05 nov. 2024.
    • APA

      Accarini, L. G. (2022). Teoria de atratores em sistemas dinâmicos impulsivos (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-24032022-095423/
    • NLM

      Accarini LG. Teoria de atratores em sistemas dinâmicos impulsivos [Internet]. 2022 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-24032022-095423/
    • Vancouver

      Accarini LG. Teoria de atratores em sistemas dinâmicos impulsivos [Internet]. 2022 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-24032022-095423/
  • Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS, DIMENSÃO INFINITA, ESTABILIDADE ESTRUTURAL, ATRATORES, ROBUSTEZ

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUSA, Alexandre do Nascimento Oliveira. Robustness of nonuniform and random exponential dichotomies with applications to differential equations. 2022. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2022. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-01042022-113035/. Acesso em: 05 nov. 2024.
    • APA

      Sousa, A. do N. O. (2022). Robustness of nonuniform and random exponential dichotomies with applications to differential equations (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-01042022-113035/
    • NLM

      Sousa A do NO. Robustness of nonuniform and random exponential dichotomies with applications to differential equations [Internet]. 2022 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-01042022-113035/
    • Vancouver

      Sousa A do NO. Robustness of nonuniform and random exponential dichotomies with applications to differential equations [Internet]. 2022 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-01042022-113035/
  • Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, ATRATORES, FRACTAIS, ESPAÇOS DE BANACH, EQUAÇÕES DE NAVIER-STOKES, OPERADORES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CUNHA, Arthur Cavalcante. Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings. 2021. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2021. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26032021-135356/. Acesso em: 05 nov. 2024.
    • APA

      Cunha, A. C. (2021). Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26032021-135356/
    • NLM

      Cunha AC. Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings [Internet]. 2021 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26032021-135356/
    • Vancouver

      Cunha AC. Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings [Internet]. 2021 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26032021-135356/
  • Source: Journal of Geometric Analysis. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, ATRATORES, INVARIANTES, ESTABILIDADE DE SISTEMAS, CONTROLABILIDADE, TEORIA DAS SINGULARIDADES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e KALITA, Piotr. On attractors of generalized semiflows with impulses. Journal of Geometric Analysis, v. 30, p. 1412–1449, 2020Tradução . . Disponível em: https://doi.org/10.1007/s12220-019-00143-0. Acesso em: 05 nov. 2024.
    • APA

      Bonotto, E. de M., & Kalita, P. (2020). On attractors of generalized semiflows with impulses. Journal of Geometric Analysis, 30, 1412–1449. doi:10.1007/s12220-019-00143-0
    • NLM

      Bonotto E de M, Kalita P. On attractors of generalized semiflows with impulses [Internet]. Journal of Geometric Analysis. 2020 ; 30 1412–1449.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s12220-019-00143-0
    • Vancouver

      Bonotto E de M, Kalita P. On attractors of generalized semiflows with impulses [Internet]. Journal of Geometric Analysis. 2020 ; 30 1412–1449.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s12220-019-00143-0
  • Source: Indiana University Mathematics Journal. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRUSCHI, Simone Mazzini e CARVALHO, Alexandre Nolasco de e PIMENTEL, Juliana Fernandes da Silva. Limiting grow-up behavior for a one-parameter family of dissipative PDEs. Indiana University Mathematics Journal, v. 69, n. 2, p. 657-683, 2020Tradução . . Disponível em: https://doi.org/10.1512/iumj.2020.69.7836. Acesso em: 05 nov. 2024.
    • APA

      Bruschi, S. M., Carvalho, A. N. de, & Pimentel, J. F. da S. (2020). Limiting grow-up behavior for a one-parameter family of dissipative PDEs. Indiana University Mathematics Journal, 69( 2), 657-683. doi:10.1512/iumj.2020.69.7836
    • NLM

      Bruschi SM, Carvalho AN de, Pimentel JF da S. Limiting grow-up behavior for a one-parameter family of dissipative PDEs [Internet]. Indiana University Mathematics Journal. 2020 ; 69( 2): 657-683.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1512/iumj.2020.69.7836
    • Vancouver

      Bruschi SM, Carvalho AN de, Pimentel JF da S. Limiting grow-up behavior for a one-parameter family of dissipative PDEs [Internet]. Indiana University Mathematics Journal. 2020 ; 69( 2): 657-683.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1512/iumj.2020.69.7836
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, ATRATORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e LANGA, José Antonio e ROBINSON, James C. Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor. Communications on Pure and Applied Analysis, v. 19, n. 4, p. 1997-2013, 2020Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2020088. Acesso em: 05 nov. 2024.
    • APA

      Carvalho, A. N. de, Langa, J. A., & Robinson, J. C. (2020). Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor. Communications on Pure and Applied Analysis, 19( 4), 1997-2013. doi:10.3934/cpaa.2020088
    • NLM

      Carvalho AN de, Langa JA, Robinson JC. Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 1997-2013.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3934/cpaa.2020088
    • Vancouver

      Carvalho AN de, Langa JA, Robinson JC. Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 1997-2013.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3934/cpaa.2020088
  • Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, ATRATORES, ANÁLISE FUNCIONAL, ESPAÇOS DE SOBOLEV

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENDONÇA, Lucas Galhego. Comportamento assintótico de um problema parabólico não linear com termos concentrados na fronteira. 2018. Dissertação (Mestrado) – Universidade de São Paulo, São Paulo, 2018. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-17042020-202209/. Acesso em: 05 nov. 2024.
    • APA

      Mendonça, L. G. (2018). Comportamento assintótico de um problema parabólico não linear com termos concentrados na fronteira (Dissertação (Mestrado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45132/tde-17042020-202209/
    • NLM

      Mendonça LG. Comportamento assintótico de um problema parabólico não linear com termos concentrados na fronteira [Internet]. 2018 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-17042020-202209/
    • Vancouver

      Mendonça LG. Comportamento assintótico de um problema parabólico não linear com termos concentrados na fronteira [Internet]. 2018 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-17042020-202209/
  • Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, ATRATORES, MEDIDA DE LEBESGUE, MEDIDA E INTEGRAÇÃO, TOPOLOGIA ALGÉBRICA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, André Ribeiro de Resende. Existência de medidas invariantes absolutamente contínuas para recobrimentos críticos do círculo com combinatória Fibonacci generalizada. 2017. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2017. Disponível em: https://teses.usp.br/teses/disponiveis/45/45132/tde-20230727-113113/. Acesso em: 05 nov. 2024.
    • APA

      Alves, A. R. de R. (2017). Existência de medidas invariantes absolutamente contínuas para recobrimentos críticos do círculo com combinatória Fibonacci generalizada (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://teses.usp.br/teses/disponiveis/45/45132/tde-20230727-113113/
    • NLM

      Alves AR de R. Existência de medidas invariantes absolutamente contínuas para recobrimentos críticos do círculo com combinatória Fibonacci generalizada [Internet]. 2017 ;[citado 2024 nov. 05 ] Available from: https://teses.usp.br/teses/disponiveis/45/45132/tde-20230727-113113/
    • Vancouver

      Alves AR de R. Existência de medidas invariantes absolutamente contínuas para recobrimentos críticos do círculo com combinatória Fibonacci generalizada [Internet]. 2017 ;[citado 2024 nov. 05 ] Available from: https://teses.usp.br/teses/disponiveis/45/45132/tde-20230727-113113/
  • Source: Abstracts. Conference titles: ICMC Summer Meeting on Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DINÂMICOS, ATRATORES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. Structural stability of uniform attractors under non-autonomous perturbations. 2017, Anais.. São Carlos: ICMC-USP, 2017. Disponível em: http://summer.icmc.usp.br/summers/summer17/pg_abstract.php. Acesso em: 05 nov. 2024.
    • APA

      Carvalho, A. N. de, Bortolan, M. C., Langa, J. A., & Raugel, G. (2017). Structural stability of uniform attractors under non-autonomous perturbations. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer17/pg_abstract.php
    • NLM

      Carvalho AN de, Bortolan MC, Langa JA, Raugel G. Structural stability of uniform attractors under non-autonomous perturbations [Internet]. Abstracts. 2017 ;[citado 2024 nov. 05 ] Available from: http://summer.icmc.usp.br/summers/summer17/pg_abstract.php
    • Vancouver

      Carvalho AN de, Bortolan MC, Langa JA, Raugel G. Structural stability of uniform attractors under non-autonomous perturbations [Internet]. Abstracts. 2017 ;[citado 2024 nov. 05 ] Available from: http://summer.icmc.usp.br/summers/summer17/pg_abstract.php
  • Source: [Abstracts]. Conference titles: Congress Gafevol. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, ATRATORES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de. Non-autonomous Morse-smale dynamical systems: structural stability under non-autonomous perturbations. 2017, Anais.. Brasília: UnB, 2017. Disponível em: http://gafevol.mat.unb.br/upload/livro%20GAFEVOL.pdf. Acesso em: 05 nov. 2024.
    • APA

      Carvalho, A. N. de. (2017). Non-autonomous Morse-smale dynamical systems: structural stability under non-autonomous perturbations. In [Abstracts]. Brasília: UnB. Recuperado de http://gafevol.mat.unb.br/upload/livro%20GAFEVOL.pdf
    • NLM

      Carvalho AN de. Non-autonomous Morse-smale dynamical systems: structural stability under non-autonomous perturbations [Internet]. [Abstracts]. 2017 ;[citado 2024 nov. 05 ] Available from: http://gafevol.mat.unb.br/upload/livro%20GAFEVOL.pdf
    • Vancouver

      Carvalho AN de. Non-autonomous Morse-smale dynamical systems: structural stability under non-autonomous perturbations [Internet]. [Abstracts]. 2017 ;[citado 2024 nov. 05 ] Available from: http://gafevol.mat.unb.br/upload/livro%20GAFEVOL.pdf
  • Source: Signal Processing. Unidade: EP

    Subjects: CAOS (SISTEMAS DINÂMICOS), SISTEMAS DINÂMICOS, ATRATORES

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CANDIDO, Renato et al. Do chaos-based communication systems really transmit chaotic signals?. Signal Processing, v. 108, p. 412-420, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.sigpro.2014.10.004. Acesso em: 05 nov. 2024.
    • APA

      Candido, R., Soriano, D. C., Silva, M. T. M. da, & Eisencraft, M. (2015). Do chaos-based communication systems really transmit chaotic signals? Signal Processing, 108, 412-420. doi:10.1016/j.sigpro.2014.10.004
    • NLM

      Candido R, Soriano DC, Silva MTM da, Eisencraft M. Do chaos-based communication systems really transmit chaotic signals? [Internet]. Signal Processing. 2015 ; 108 412-420.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.sigpro.2014.10.004
    • Vancouver

      Candido R, Soriano DC, Silva MTM da, Eisencraft M. Do chaos-based communication systems really transmit chaotic signals? [Internet]. Signal Processing. 2015 ; 108 412-420.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.sigpro.2014.10.004
  • Unidade: IF

    Subjects: SISTEMAS DINÂMICOS, ATRATORES, CAOS (SISTEMAS DINÂMICOS)

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FAÇANHA, Wilson Luiz da Costa. Análise de mapeamentos não lineares e aplicações. 2015. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2015. . Acesso em: 05 nov. 2024.
    • APA

      Façanha, W. L. da C. (2015). Análise de mapeamentos não lineares e aplicações (Tese (Doutorado). Universidade de São Paulo, São Paulo.
    • NLM

      Façanha WL da C. Análise de mapeamentos não lineares e aplicações. 2015 ;[citado 2024 nov. 05 ]
    • Vancouver

      Façanha WL da C. Análise de mapeamentos não lineares e aplicações. 2015 ;[citado 2024 nov. 05 ]
  • Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, ATRATORES, OPERADORES LINEARES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, Pricila da Silva. Continuidade de atratores para uma família de problemas parabólicos semi-lineares em domínios Lipschitzianos. 2015. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2015. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-29032023-153751/. Acesso em: 05 nov. 2024.
    • APA

      Barbosa, P. da S. (2015). Continuidade de atratores para uma família de problemas parabólicos semi-lineares em domínios Lipschitzianos (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45132/tde-29032023-153751/
    • NLM

      Barbosa P da S. Continuidade de atratores para uma família de problemas parabólicos semi-lineares em domínios Lipschitzianos [Internet]. 2015 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-29032023-153751/
    • Vancouver

      Barbosa P da S. Continuidade de atratores para uma família de problemas parabólicos semi-lineares em domínios Lipschitzianos [Internet]. 2015 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-29032023-153751/
  • Unidade: ICMC

    Subjects: ATRATORES, ANÁLISE FUNCIONAL, SISTEMAS DINÂMICOS, ÁLGEBRA LINEAR, SISTEMAS DE OPERADORES, SEMIGRUPOS DE OPERADORES LINEARES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FISCHER, Arthur Geromel. Robustez da dinâmica sob perturbações: da semicontinuidade superior à estabilidade estrutural. 2015. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2015. Disponível em: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-08012016-110211/. Acesso em: 05 nov. 2024.
    • APA

      Fischer, A. G. (2015). Robustez da dinâmica sob perturbações: da semicontinuidade superior à estabilidade estrutural (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-08012016-110211/
    • NLM

      Fischer AG. Robustez da dinâmica sob perturbações: da semicontinuidade superior à estabilidade estrutural [Internet]. 2015 ;[citado 2024 nov. 05 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-08012016-110211/
    • Vancouver

      Fischer AG. Robustez da dinâmica sob perturbações: da semicontinuidade superior à estabilidade estrutural [Internet]. 2015 ;[citado 2024 nov. 05 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-08012016-110211/
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DINÂMICOS, ATRATORES

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus C e CARVALHO, Alexandre Nolasco de. Strongly damped wave equation and its Yosida approximations. Topological Methods in Nonlinear Analysis, v. 46, n. 2, p. 563-602, 2015Tradução . . Disponível em: https://doi.org/10.12775/tmna.2015.059. Acesso em: 05 nov. 2024.
    • APA

      Bortolan, M. C., & Carvalho, A. N. de. (2015). Strongly damped wave equation and its Yosida approximations. Topological Methods in Nonlinear Analysis, 46( 2), 563-602. doi:10.12775/tmna.2015.059
    • NLM

      Bortolan MC, Carvalho AN de. Strongly damped wave equation and its Yosida approximations [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 563-602.[citado 2024 nov. 05 ] Available from: https://doi.org/10.12775/tmna.2015.059
    • Vancouver

      Bortolan MC, Carvalho AN de. Strongly damped wave equation and its Yosida approximations [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 563-602.[citado 2024 nov. 05 ] Available from: https://doi.org/10.12775/tmna.2015.059

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024