Non-autonomous Morse-smale dynamical systems: structural stability under non-autonomous perturbations (2017)
- Autor:
- Autor USP: CARVALHO, ALEXANDRE NOLASCO DE - ICMC
- Unidade: ICMC
- Subjects: SISTEMAS DINÂMICOS; ATRATORES
- Language: Inglês
- Imprenta:
- Source:
- Título: [Abstracts]
- Conference titles: Congress Gafevol
-
ABNT
CARVALHO, Alexandre Nolasco de. Non-autonomous Morse-smale dynamical systems: structural stability under non-autonomous perturbations. 2017, Anais.. Brasília: UnB, 2017. Disponível em: http://gafevol.mat.unb.br/upload/livro%20GAFEVOL.pdf. Acesso em: 23 jan. 2026. -
APA
Carvalho, A. N. de. (2017). Non-autonomous Morse-smale dynamical systems: structural stability under non-autonomous perturbations. In [Abstracts]. Brasília: UnB. Recuperado de http://gafevol.mat.unb.br/upload/livro%20GAFEVOL.pdf -
NLM
Carvalho AN de. Non-autonomous Morse-smale dynamical systems: structural stability under non-autonomous perturbations [Internet]. [Abstracts]. 2017 ;[citado 2026 jan. 23 ] Available from: http://gafevol.mat.unb.br/upload/livro%20GAFEVOL.pdf -
Vancouver
Carvalho AN de. Non-autonomous Morse-smale dynamical systems: structural stability under non-autonomous perturbations [Internet]. [Abstracts]. 2017 ;[citado 2026 jan. 23 ] Available from: http://gafevol.mat.unb.br/upload/livro%20GAFEVOL.pdf - Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram
- On the continuation of solutions of nonautonomous semilinear parabolic problems
- NLS-Like equations in bounded domains: parabolic approximation procedure
- Navier-Stokes equations: a millennium prize problem from the point of view of continuation of solutions
- Asymptotic behaviour of nonlinear parabolic equations with monotone principal part
- Abstract parabolic problems in ordered Banach spaces
- Padrões em problemas parabólicos
- Structural stability of uniform attractors under non-autonomous perturbations
- Robustness of dynamically gradient multivalued dynamical systems
- Structure and bifurcation of pullback attractors in a non-autonomous Chafee-Infante equation
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
