Navier-Stokes equations: a millennium prize problem from the point of view of continuation of solutions (2024)
- Authors:
- Autor USP: CARVALHO, ALEXANDRE NOLASCO DE - ICMC
- Unidade: ICMC
- DOI: 10.21711/231766362024/rmc592
- Subjects: EQUAÇÕES DE NAVIER-STOKES; EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS
- Keywords: parabolic semilinear problems; local and global wellposedness; nonlinearities with critical growth
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: SBM
- Publisher place: Rio de Janeiro
- Date published: 2024
- Source:
- Título: Matemática Contemporânea
- ISSN: 2317-6636
- Volume/Número/Paginação/Ano: v. 59, p. 4-17, 2024
- Conference titles: Americas Conference on Differential Equations and Nonlinear Analysis
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: bronze
-
ABNT
CARVALHO, Alexandre Nolasco de e OLIVEIRA-SOUSA, Alexandre do Nascimento. Navier-Stokes equations: a millennium prize problem from the point of view of continuation of solutions. Matemática Contemporânea. Rio de Janeiro: SBM. Disponível em: https://doi.org/10.21711/231766362024/rmc592. Acesso em: 21 maio 2025. , 2024 -
APA
Carvalho, A. N. de, & Oliveira-Sousa, A. do N. (2024). Navier-Stokes equations: a millennium prize problem from the point of view of continuation of solutions. Matemática Contemporânea. Rio de Janeiro: SBM. doi:10.21711/231766362024/rmc592 -
NLM
Carvalho AN de, Oliveira-Sousa A do N. Navier-Stokes equations: a millennium prize problem from the point of view of continuation of solutions [Internet]. Matemática Contemporânea. 2024 ; 59 4-17.[citado 2025 maio 21 ] Available from: https://doi.org/10.21711/231766362024/rmc592 -
Vancouver
Carvalho AN de, Oliveira-Sousa A do N. Navier-Stokes equations: a millennium prize problem from the point of view of continuation of solutions [Internet]. Matemática Contemporânea. 2024 ; 59 4-17.[citado 2025 maio 21 ] Available from: https://doi.org/10.21711/231766362024/rmc592 - Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics
- Structure of attractors for skew product semiflows
- Continuity of attractors for a semilinear wave equation with variable coefficients
- Patterns in parabolic problems with nonlinear boundary conditions
- Non-autonomous perturbation of autonomous semilinear differential equations: continuity of local stable and unstable manifolds
- Continuity of the dynamics in a localized large diffusion problem with nonlinear boundary conditions
- Exponential global attractors for semigroups in metric spaces with applications to differential equations
- Continuity of dynamical structures for non-autonomous evolution equations under singular perturbations
- A gradient-like non-autonomous evolution process
- Equi-exponential attraction and rate of convergence of attractors with application to a perturbed damped wave equation
Informações sobre o DOI: 10.21711/231766362024/rmc592 (Fonte: oaDOI API)
Download do texto completo
Tipo | Nome | Link | |
---|---|---|---|
3190648.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas